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Sb_fMARY

This report demonstrates the successful application of statistical

variable selection techniques to fit splines. Major. emphasis is given to

knot selection, but order determination is also discussed. Two FORTRAN

backward elimination programs using the B-spline basis were developed, and

the one for knot elimination is compared in detail with two other spline-

fitting methods and several statistical software packages. An example is

also given for the two-variable case using a tensor product basis, with a

theoretical discussion of the difficulties of their use.

I. INTRODUCTION

Polynomial splines have often been employed in modeling or data fitting

when the functional form of the relationship between the dependent and inde-

pendent variables is unknown. The major problem has been how to avoid

under- or overfitting the data. A strictly mathematical approach is to add

knots one at a time and move them around until the L2 (or some other) norm

of the errors is less than a preselected tolerance level (ref. i). A major

problem with this approach is that a good fit depends entirely on the sub-

jective selection of the tolerance level. A fitting method which attempts

to avoid this problem is the smoothing technique introduced by Reinsch

(ref. 2), but it requires the experimenter to have good a priori information

about the data or the process which generated it. Both of these methods are

currently feasible only for functions of a single variable.

A statistical approach to the curve-fitting problem using the method of

cross-validation was introduced by Wahba and Wold (ref. 3). The major



advantage of this procedure is its automation: no _ _riori information is

needed. There are several disadvantages, however. Every data point is a

knot so that the resulting functional form is difficult to use and inter-

pret. In addition, if there are clearly identifiable trends in certain

portions of the data such as linearity or sharp bends, this information is

lost analytically even though it shows up when the spline is plotted. The

practical use of this technique is also currently restricted to functions of

one or two variables. The two variable case is considered in Wahba (ref.

4), with higher dimensions discussed in Wahba and Wendelberger (ref. 5).

Other statistical approaches to the variable knot spline problem have

considered the knots as parameters in the model. However, this presents

problems in finding the least squares solution and in subsequent statistical

estimation and testing procedures because the model is nonlinear. Tradi-

tional (ref. 6) as well as Bayesian (ref. 7) approaches have been investi-

gated, but both are limited in scope and application. Further, in most

cases, though the knot locations have been variable, their number has been

fixed _ priori by the analyst, Some exceptions are the works of Ertel and

Fowlkes (ref. 8), Smith and Smith (ref. 9), and Agarwal and Studden (ref.

I0), but, as with most other approaches mentioned above, they have not been

developed to fit splines in several variables.

The technique investigated in this research is the use of variable

selection procedures to fit splines. If a pool of knots is fixed in advance,

then statistical linear models theory can be applied in a variable selec-

tion framework. There are four major advantages of the variable selection

approach to fitting splines. First, variable selection procedures are

essentially user independent (automatic) in their use of the F test as a

stopping criterion. Second, they are widely available in statistical soft-

ware. Third, final fits may have straightforward intepretations because of

their simplicity or theoretical foundation. Fourth, regression diagnostics,

such as outlier detection, may be performed. These advantages and other

desirable properties are discussed in Section 4, along with a comparison of

several methods and software.

The theory applies not only to splines in a single variable, but also

to splines in several variables using a tensor product basis. However, as



the careful and detailed development of this technique in the one-variable
case is considered a crucial step to its use in several variables, discus--

sion of the multivariate case is restricted to Section 7, and includes an

example of its successful application to aerodynamic modeling.

The major emphasis of this report is the application of variable selec-
tion procedures for choosing the number and location of the knots for

splines in a single variable of fixed order (= degree +I). A detailed dis-

cussion of this "knot selection" approach is given in Section 2 with exam-

pies, comparison of methods and software, and applications in Sections 3-5.
Choosing the spline order with the numberand location Of the knots fixed is

of less interest and considered in Section 6 only. FORTRANprograms which

apply backward elimination in these two contexts were written as part of

this research and discussed in Sections 2 and 6. Their documentation, flow-

charts, and listings are given in the Appendix.

LIST OFSYMBOLS

i-

a

a.
i

Ao i,Ali,A£

b

b •
3

Boj B£

Bi(x,y)

CO,C 1

C-1

cO C1 ,ok-2 Ck-3

C
n

angle of attack

breakpoint for angle of attack

regression coefficients

sideslip angle

breakpoint for sideslip angle

regression coefficients

two-varlable spline basis element

regression coefficients

class of discontinuous functions

functions with continuity class 0, I, k-2, k-3

yawi-ng moment coefficient
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vertical force coefficient
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Z
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regression coefficients •

function and its first k

ind ex

index

spline order (degree + I)

ntunber of breakpoints

normal distribution

sample size

nondimensional rolling

nondimensional pitch

quant ile function

nondimensional yawing

breakpo in t

independent variable

derivative of C n with respect to

with respect to

derivatives

velocity
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veloc it y
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X
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independent variable
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Y

YO'" • • 'Y3'Yj

O' " " " ,B 32,B 1

6 ,6 e,6a r

dependent variable

breakpoint s rot y

significance level

regression coefficients

aileron, elevator, and rudder deflection

random error

lJ

O.

ij

mean

standard deviation

gridpoint (xi,Y j)

Abbrev iat ions :

KS

MSE

SS

SSE

WW

knot selection

mean squared error

Smith-Smith

error sum of squares

Wahba-Wold

2. THE KNOT SELECTION (KS) PROCEDURE

B

Statistical variable selection procedures can be used as a KS procedure

to choose the number and location of knots in fitting splines. The "+"

function basis is sulitable for this, at least theoretically, because it is

ea.sily interpreted. Knots and knot multiplicities correspond'to individual

terms so that selection or deletion of termsis equivalent .to selection or

deletion of knots. The knots .are thus selected-indirectly. For example, a

continuous linear spline with knots t2, ,;,t£ may be written as

£

i)÷,+ S x + E 8 (x - t where u = u for u _ 0 and zero other-:
o I 2 i +

5
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wise. Selection of the "spline term" (x - t.) is actually selection of the
] +

knot t .. Because we don't know where the breakpoints should be, we provide
]

as candidate variables a liberal number of spline terms, i.e., a pool of

knots, mo_e than we expect or want to eventually use, and blanket the

domain. Thus, the actual number and location of the knots used in the final

model is unknown at the beginning in the sense that we are selecting from a

larger set.

While "+" functions are easily defined in current statistical software

packages and fit into the statistical hypothesis testing framework without

modification (ref. II), computational problems such as carry-over in round-

off error and mu!ticollinearity greatly restrict their use. As will be seen

in Section 4, the backward elimination (stepdown) procedures are especially

troublesome because all terms must be fit initially. An alternative is the

use of the computationally advantageous B-spline basis (ref. I). Unfortu-

nately, it does not fit easily into the hypothesis testing framework and

cannot be used in existing statistical software packages. There was thus a

need for the development of a KS procedure using B-splines. Construction

of hypotheses which are useful in B-spline regression, including testing the

importance of knots, has been detailed in Smith (ref. 12). As part of this

research, these results have been implemented in two FORTRAN computer

programs, One of which accommodates the backward elimination of knots using

the B-spline basis. Examples in Section 3 give the results of using this

FORTRAN program, and comparisons with several statistical software packages,

as well as with other statistical spline-fitting methods, are detailed in

Section 4.

The use of variable selection is a sort of compromise between the tech-

niques which use either fixed or var,iab!e knots. Its most important advan-

tage, and one which makes possible all others, is that because the maximum

ntunber and location of the knots is fixed in advance, the statistical theory

of general linear models applies. Consequently, the least squares solution-
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is easily obtained at any gzven step, and hypothesis testing and interval

estimation are straightforward. As mentioned earlier, details for using the

B-spline basis are given in reference 12. _e sel.ection of knots can thus

be accomplished through t tests. This fits exactly into the variable

selection framework for (I) spline models in a single variable, (2) models

in several variables with spline terms in one or more variables, and (3)

models in several Variables with tensor products defining higher dimensional

splines. Also, trends in the data in one or more variables may be easily

detected through the selection of a few knots. Several examples of this

will be given in the next section. Further, in some experimental situa-

tions, models may be easily interpreted because the coefficients are physi-

cally meaningful, as in some examples in Sections 5 and 7.

3. EXAMPLES OF THE KS PROCEDURE

Four data sets were examined using the FORTRAN knot elimination pro-

grmo. The maximum number of continuity constraints allowed for any given

order were imposed. The first data set, the Indy data, is rather simplistic

but has appeared in the statistical literature several times in connection

with curve-fitting with splines. It is a record of the average winning

speeds at the Indianapolis 500 from 1911-1971, except for 1917-1918 and

1942-1945, during the two World Wars when the race was not run. Poirier

(ref. 13) fit the data with a cubic spline with 2 knots, one each at the

midpoint of the non-racing years. The data were coded so that x = year -

1910 with knots 7.5 and 33.5. The output and graphs from the knot elimi-

nation routine are shown in Figures 3.1 to 3.4, with circles around the

function values of the knots. Using an F-table value of 8.0 (a = 0.01), the

KS procedure eliminates both knots so that a cubic polynomial is adequate

to fit the data. If a linear rather than a cubic spline is fit, only the

knot at x = 7.5 can be eliminated (Figures 3.5 to 3.7).

The second example is noisy data generated from the function used in

reference 3

f(x) = 4.26(e -x - 4e -2x + 3e-3X)
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It+b, E_TA

h++Ep--_ y _,:
1911 -_.5+ i.

19i2 78+1'20 2.
1913 i"5.991 _.
1914 _..470 4.
191+ 83,C-,_ 5,
1916 e4.(l._ 6.

1919 _8.0c,,_ 9.

igE0 88.&20 10.

1921 89+_ I!.

1923 9_.9g_0 13.

192,'. 98.Z20 14.

19-_S 101. 130 15.

1926 95.,c_4 16.

1827 97._45 17.

1928 99. + "_-6_ 18.

1929 97.5_- _8.

193_ 100.4_8 _=0.
1931 96.639 2t.
19_, 184.114 1_,

I_33 IP_a.16 -_ Z3.

1934 I0_1.8_3 3_.

19_ IC-wS.,L"_9 26.

1937 L13._8C) 27.

1938 II.-,@0_ SB.
1939 I15,0_. _'8.

1940 ila.2T_7 38.

1941 115.1!7 31.

19-16 II_.8Z0 36. •

1947 116.3_ 37.

1949 I-_1.3_? 39.

1950 IZ4,00Z 40:

1951 '---'6.Z_ 41.

1952 128.912 43.

1._-.3 12_,.740 43.
195_ 130. 840 4,.I
19E5 178.D3'? "=
195_ i2S.490 J6.

1957 135.60i 4,-.

1959 138._..7 +_

'_c_3i1_9., 1='%3 5!.
I._6Z 140, r?.93 _'=
i_3 143. I_? =_

19_.J I_7. _TO F-J,

1966 14+'.317 ._..

1_,_ 152._,_ -.-_.

1969 156,8_7 _9.

1970 I_5. ,"J9 _0,
1971 157.73._,., 61.

THE $ I_TEWV_L5 L • 3

THE DIMEHSION M • 6

33.50_

62..800301_

CC_TI_uI T r C,;,P;DIT IG"

8

3

3

T IPCJEx

O. 00_0000 3

e. 0L_3_O8o a

33,5 OO00C_ 6

_._ 7
62. _ 8

62. _3+.-_000 9
_Z. CXi.,%,38G."r'_ iO

_'Et_D, I , • 4

Ei"tD, 2 +- 5

L" 3 F-T_Bt.E VALUE IS 8._YO00_O0

SSE" 385._18 MS_: 7.EE2_3_]EgO

F-RPTIOS AOE: B_EA_01P+TE AFE

1.41.c_9767 7.EO00C_]O_

•3v417J63 33,50L7000C.0

_E_31hT 33.500 IS ELIIIII_TED

L- _ F-TABLE ','ALLE 15 a,000o000.o

SSE- 387. 839(_7";/1 MSE- 7,75678:75

F-4_TIOS A_E: _7A_POINT5 A_E

I. i 188Z_ 7._00

BREAKF_I_T 7.5_ IS ELIMIP_TED

5SE, 3_.._-_33_ 11 t'roE- 7.7,'_-.00655

P_ED_ TERMINATES _iTH L- I _ x- 4

H COEF $.E.

1 7J.74373319 1.5_01"_

113.63057_1 3,16B0_157

4 161.4_053672 1.5_807401

Figure 3.1. Output for knot 4:limination. Indy data. Cubic spline.
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Figure 3.2.
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First step of knot elimination. Indy data. Cubic Spline,

>- lt6

_N
0

m ; " 44,,

_-- ,,

t2._t 2_1.8 _.2 _.£ 62.0
INDY DQTQ

Figure 3.3. Second step of knot elimination. Indy data. Cubic spline.
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]37

>- ]L6

4" i. "e

" 4. "t'

.$. $.

'$' 4._4. i/,

4. 4. .

-- 4" 4" 4.

12.q 2';.8 _.2 ;9.8 62.0
I NDY DATR

Third and final step of knot elimination. Indy data.

spline.

Cubic

Lo 3 r-TABLE O_LUE 15

S_E- 453.468e8846 MSE-

F-R_TJOS _REn BREnKPOINT5 _RE
5.60928_18 ?.seeeeeee

16.aTe428a3 33.seeeeeee

BRERKPO|HT ?.See ]$ ELIM|HRTED

L- 2 F-TABLE UALUE rS

SSE- _e3.J43E283S MSE-

F-R_TIO5 _RE_ _RE_KPO|N?_ _RE
g. B34283S3 33.seeeeeee

NO B_EAKPO|NT CAN _E EL]M|NnTED

PROCEDURE TERMZHATES U_.TH+ L- 2._ND K- -_

H C0EF S.E.
! ?8.15e96288 I.IaB54643
E llS.Sae3s??5 .91_53e83
3 JST.e41E?664 1.14egSe?g

+Figure 3.5. Partial output for knot elimination. Indy data. Linear

spline.
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Figure

13r7

_,- 110

5

0

m

12.q _ .11 3?.2 q9.6 52,0
INOY Ol_Tl:l

3.6. First step of knot elimination. Indy data. Linear spline.

_,-- J 16

,,',,,,,,,l,,,,l,,,, i,,,,,,,,,l,,,,,l,, ,Ju,,,,,,,l
0 t2.q _N.O 37.2 q9.$ i_.O

IklOyDATA

Figure 3.7. Second and final step of knot elimination. Indy data. Linear

spline.
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for _[0,3]. For x starting at zero, we generated I00 data points at

intervals of 1/32 up to 99/32 and added normal random noise, N(U = 0,

=' .2), the value of o the same as that used by Wahba and Wold (WW). A

graph of the function and generated data is shown in Figure 3.8. Figures

3. 9 to 3.27 show graphical results of the stepdown procedure for cubic

splines starting with 19 equally spaced interior knots, and using ah F-table

value of 8,0. By examining this sequence of graphs, it becomes clear how

the elimination of knots makes the spline smoother by making it less noise

dependent.

An F-table value of 4.0 (a = 0.05) rather than 8.0 results in stepdown

terminating with 5 knots remaining (Fig. 3.23, p. 20). The latter fit is

more data dependent and clearly inferior in terms of recovering the desired

function. Use of the larger F value thus seems appropriate and keeps the

procedure from terminating "prematurely." Graphs of starting and ending

fits to the data, beginning with• 39 interior knots, are shown in Figures

3.28 to 3.29, and the results are roughly the same as when 19 knots are used

initially (Figure 3.27, p. 22). A phenomenon which occurs throughout most

of these fits is the downward hook in the upper range of the x's due to a

cluster of 3 data points. Figure 3. 30 shows the conclusion of stepdown with

those 3 points omitted and helps to illustrate the fact that different noise

results in different fits.

The method used by Wahba and Wold to recover the function is a modifi-

cation of the _noothing technique introduced by Reinsch (ref. 2). _ey use

cross-validation to determine the smoothing parameter, and their resulting

fit is shown in Figure 3.31. Referring again to Figure 3.27, p. 22, we see

that the results of the two methods compare very favorably. A more detailed

comparison of these methods and others is made in the next section.

Smith and Smith (SS) (ref. 9) examine a scaled version of the WW

-3.25x .5x -9.75x)function, f(x) = 4.26 le - 4e _'6 + 3e _ for x¢[O,l]. A sample

of size 600 equally spaced points was generated, and a variance of 0.039 (as

in SS) was used for the normally distributed zero mean noise. Results from

12



Figure 3.8, The Wahha-Wold(WW)function and data generated from it.

Figure 3.9.
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/Zd-

\+ +._/_+
.'F •
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;.01 • 61 1.23 1.86 2.48 3. tO
-- NN DATA

First step of knot elimination. WW data.
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.6"/

+

,1-2'_ 1.86 2.48 • 3. tO

NN DATA

Figure 3.10. Second step of knot elimination. _w7 data.

Figure 3.11. Third step of knot elimination. _q data.
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+

+

÷

-1 .YO
- .01 . 81 :1,23 1.86 2.Y8 3. tO

. NN DATA

Figure 3.12. Fourth step of knot elimination. _W data.

.t5

>- -.3?

'.88

÷

÷ ÷

÷ ÷ ÷ ÷

+ _ ÷ ++

-- ÷ ÷ _

-- ÷

-- ÷

•8J 1.23 _ .86 2.Y8 3.tO

NN DATA

Figure 3.13. Fifth step of knot elimination. WW data.
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Figure 3.14.

•61 "1.23 !-86 2.LIB
NN DATA

Sixth step of knot elimination. _q data.

Figure 3.15. Seventh step of knot elimination.
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3.10
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Figure 3.16. Eighth ste_ of knot elimination. [_.7data.
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- .88

-! ._0
-.01 .61 I;23 !.86

WW DATA

Figure 3.17. Ninth step of knot elimination.
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E
m

2._8 3.tC)

WW data.
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Tenth step of knot elimination.Figure 3.18. W_ data.

.87_ +

+ ÷
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or5

>- -.37 + .

÷ +

" ÷ " I-1.LIO
-.01 .B1 1.23 I .86 2.U_8 3. [0

NN OATA

Figure 3.19. Eleventh step of knot elimination. WW data.
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•67 F + ÷ +

++ '+°i ++_+++ +

>--..?_- /s •
t--4 IT#

÷ ÷

÷.÷ . "
d

-1 ._0
-.01 .Bl 1.23 1.86 2.q8 3.tO

NN DATA

Figure 3.20. Twelfth step of knot elimination. WW data.

.%
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k,\-,88 + '_" + ....
+ + _'÷ . _ " . .. " - ; "

" 4",,i. • . ._,._O_
-.01 ..61 I .23 1.86

NN DATA

Figure 3.21 • Thirteenth step o£ knot elimination. WW data.
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Figure 3.22. Fourteenth step of knot elimination. WW data.

.[5

>- -.37

-.88

Figure 3.23. Fifteenth step of knot elimination. WW data.
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Figure 3.24. Sixteenth step of knot elimination. WW data.

q' _' ,b q'

•
-.0L .61 ;.23 I._S 2._8 _.10

WW DQTQ

Figure 3.25. Seventeenth step of knot elimination. _W data.
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Figure 3.26. Eighteenth step of knot elimlnation. WW data.

46

>- -._

-,m

_= -I.tO

it _._ . .

m
B

•0t .$t 1.2g t ,_ 2.q,8 3.10
_ DATA

Figure 3.27. Nineteenth and final step of knot elimination. WW data.
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,iS

-,BB

-.Or •8! J .,?.$ t .aS 2._a _.I0
WW DATA

Figure 3.28. First step of knot elimination with 39 interior knots.
WW data.

.t5

Figure 3.29 Final step Of knot elimination from 39 kno=s. WW data.
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Figure 3.30. Final step of knot elimination with 3 data points in

upper x-range omitted. WW data.

Figure 3.31.

•U I r-d

•"L ",=.J=_':°-==_;==--==!
S== " ' I

•w r,._ o'&o i
I: ;_ e,lr " - -

'!_,_ = i
• I .Ill.t._

•W ,iill .II ,il I.II I.ili I.lll I._ I,lil I,,il I. ill II.'II I.i: l..li

Spline fit obtained by cross-validation by Wahba and

Wold. WW data,
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two stepdown runs fitting cubic-splines are shown in Figures 3.32 to 3. 33,

beginning with 19 and 49 knots. Three knots remain in Figure 3.32 with a

slightly wigglier fit than that in Figure 3.33 with one remaining knot.

These results show that a larger knot selection pool allows reduction to

possibly a fewer number of final knots _and a smoother fit, which, for

simplicity, is more desirable.

Smith and Smith use asymptotic results to determine a stopping rule for

adding knots one at a time to the model. Figure 3.34 shows their results

using cubic splines overlald on the true function. ` The data were not plot-

ted so that the distinctions between the two functions would not be lost.

Applying stepdown using these 9 initial knots resulted in Figure 3.35, a fit

which s=ooths the wiggles visible in Figure 3. 34. As seen in the two

previous figures, however, using a larger pool of knots results in a

smoother and more satisfactory recovery of the function. The SS method is

compared in more detail to both the WW and KS methods in the next

section.

The final function examined is f(x) = sin (x2) for xc[0,4.5], which

allows for more than two periods of the sine wave and gradually increases

the frequency. Three hundred data points were used with o = .2 for the

normal noise. Beginning and ending cubic spline fits from a stepdown run

are shown in Figures 3.36 to 3.37, starting with 19 interior knots and

ending with 9. We note that more knots are needed for the final fit than

for the functions previously discussed due tO the increased curvature of the

function. Most of the wiggliness in the initial spline fit occurs on the

more gradual slope at the lower end of the x-range and is removed as knots

are removed. This phenomenon also occurs on the "flat" portion of the SS

and WW data.

In order to assess the effects of a lower noise level on the KS tech-

nique, random variables used for the noise on the WW function were generated

using o _- .I and .05. Final fits are shown in Figures 3.38 to 3.39, and

referring back _ to Figure 3.27, p. 22, which shows results using o = .2, we

see that fitting data with a lower noise level results in more knots

remaining at the end of the procedure. This tendency is especially striking

when data from the function itself is fit, that is, when no noise is added

so that to
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Figure 3.32. Final step of knot elimination from 19 knots, SS data.

Figure 3.33.
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Figure 3.34. Cubic spline solution of Smith and Smith SS data.

(Actual data not shown.)

Figure 3.35. Final step of knot elimination from 9 knots.

splines. SS data. (Actual data not shown.)

Cubic
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Figure 3.36. First step of knot elimination with 19 knots, True
function is sin (x2).
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Figure 3.38. Final step of knot elimination from 19 knots with o = 0.i
in the noise. WW data.
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Figure 3.39. Final step of knot elimination from 19 knots with o = 0,05
in the noise W-W data.
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recover the function we actually need to interp01ate. A stepdown from 19

knots results in a spline width: 12"'_knots as shown in Figures 3.40 to 3.41.

Both the true and fitted functions are graphed, but there is no perceptible

difference between the two.

Wiggliness in data should be smoothed (i.e., ignored) if it is per-

ceived as noise, but should be fit if it is perceived as trends in the

underlying process. Thus, a danger in applying the KS technique is using

too small or too large a pool of knots. Be former problem is illustrated

quite Well in Figures 3.42 to 3.43, where noisy data generated from sin (x2)

is fit with the KS technique beginning with too few knots to allow the

bending necessary to recover the function, especially near the third peak.

It is interesting to see that the three knots eliminated were in the lower

end of the x range where the underlying function is not wiggly. A

comparison of Figures 3.37, p. 28, and 3.42 reveals that both have 9 knots,

but a better fit is obtained from the one which began with 19 knots (Fig.

3.37): its 9 knots are more selectively and better placed.

4. COMPARISON OF METHODS AND SOFR_ARE

In the previous section, two functions introduced in the literature (WW

and SS) were examined using the FORTRAN knot elimination program. The pur-

pose was to compare results, which we do in this section, in light of what

we consider to be the most desirable properties of curve-fitting with

splines. These are:

(I) good results;

(2) computational efficiency;

(3) diagnostics capabilities;

(4) user independence;

(5) ease of interpretation; and

(6) ease of use.

We also give in this section the results of using several statistical soft-

ware packages on the Indy and T_ data, fitting both linear and cubic

splines.
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Figure 3.40. First step of knot elimination with 19 knots. No Noise.

WW data.
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Figure 3.&l. Final step of knot elimination from 19 knots.

WW data.
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Most statisticians have ready access to variable selection procedures,

either in programs they have written themselves, or in widely available

statistical software packages. Fitting splines through knot select{on with

these programs is a potential advantage of their use, which is realized only

if good results are obtained. A summary of the results of using four such

packages is given in Table 4.1: SAS (ref. 14), SPSS (ref. 15), MINITAB

(ref. 16), and BMDP (ref. 17).

Table 4.1. Results of using variable selection techniques to fit

splines with four statistical software packages.

St epwi se St e pdown

Indy WW I Indy WW I

SAS Iinear / / ,/ ,/

cubic J / ,/ ¢

SPSS linear ,/ ,/ ,/ ,/

cubic ,I J ,/ ,/_2

MINITAB linear / ,/ / ,/

cubic / X X X

BMD_ linear X X X X

cubic X X X X

i Selection pool of 19 interior knots.

2Numerical output has some inaccuracies, but overall results are correct.

3Tolerance cannot be made low enough to force entry of necessary terms.

In the case of stepwise procedures, accuracy was determined by comparing

outputs for the various packages among themselves, while outputs for the

stepdown procedures were compared with the FORTRAN B-spline knot elimination

program. Results are surprisingly good considering the fact that the "+"

function basis must be used. Entries marked with an "X" indicate failure to

produce accurate results or, sometimes, any results at all due to high

multicolllnearity in the models or low tolerance, especially in stepd0wn.
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_'ne minimum tolerance allowed for SPSS, i0 -12, had to be used to force entry

of some _of the polynomial terms or to get results in stepdown. For BMI)P:

the tolerance of 0.01 for variable selection was not low enough to force

entry of necessary terms to get results for any of the cases considered. As

expected, less trouble was had with fewer knots (Indy data), lower degree

(linear), and simpler models {stepwise). Stepdown gave accurate results in

several cases even for a large number of knots, but there are limitations.

For instance, computational problems were encountered by gAS for the cubic

WW data with 39 knots. _e final models determined by stepwise and step-

down, however, were either identical or very similar. The occasional user

of splines could thus safely rely on stepwise procedures from one of several

packages to give good results.

Table 4.2 compares several spline-fitting methods: Wahba-Wold (WW),

Smith-Smith (SS), and knot selection (KS). As the latter method may be

implemented through several different computer programs, two statistical

packages and the FORTRAN knot elimination routine are included. All methods

give good results for the data examined, though as seen in earlier discus-

sion, care must be taken when using the statistical packages, especially

for stepdown. Their use of the "+" function makes th_ computationally

inefficient and can cause severe problems. %hey are handy, however, for the

occasional user as is the WW method which is available as an I_MSL subroutine

(ref. 18). The KS techniques depend on setting an (x level for the hypo-

thesis tests and specifying an initial pool of knots but are otherwise user

independent. 1'ne WW method is "completely automatic," while the SS method

depends on user application of the stopping criterion. The KS approach in

general produces results which are easier to interpret.

Results from this section and from Section 3 show that splines

fit by knot selection recover the underlying functions quite well and

compare very favorably with the results of Wahba and Wold and improve upon

those of Smith and Smith. Though somewhat simplistic, the knot selection

approach provides an alternative to the method of cross-validation and

offers a great computational savings. In addition, there is the possibility

of analytic or physical interpretation in many modeling situations, an

exanple of which is given in the next section.
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Table 4.2. Comparison of spline-fitting techniques

and software.

Desirable Properties

Good results

WW

¢

SS SAS

/ /

Knot Selection

SPSS

.1/-- .

B-Spl ines
FORTRAN

¢

Computational efficiency */ X X /

DiagnoStics capabilities x x ¢ ¢ ¢

User independence

Ease of interpretation

Ease of use occasionally

¢ ¢- J-

x x ¢ ¢

¢ x ¢-_ ¢

¢

ISAS' is available only on IBM-compatible machines.

5. SOME SPECIAL APPLICATIONS

Probably the most useful application of the KS technique is data-

smoothing, and in Section 3 we saw several examples of recovering underlying

functions fro_ noisy data. A variation that is useful in simulation

experiments is smoothing the sample quantile function. This

for
function is a left-continuous step function defined as Q(u) = x(i )

(i-l)/n < u ( i/n, where n is the sample size and x(f) is the i-th

order statistic. Experimental conditions can be simulated by generating

data which behaves like the original, and a smoothed sample quantile

function provides a continuous distribution from which to draw the simulated

data. An advantage of smoothing the sample quantile function, rather than

its pseudo-inverse , the sample cumulative distribution function, is that the

former always has domain [0,I] regardless of the type of distribution.

- 7"=7
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Programming can thus be standardized, as, for example , in the determination

of the original knot selection pool.

The KS technique is also useful in modeling. For example, stepwise

regression has been applied successfully by Klein, Batterson, and Smith

(ref. 19) to model flight data using splines. They use "+" function terms

defined in the angle-of-attack variable in a Taylor series expansion of

force and moment coefficients in order to model longitudinal motion of an

airplane. One of their simple "spline-mod{fied" Taylor series expansions of

the vertical aerodynamic force coefficient C z is given by

where

C = C (a) C (a) q' + C (a)
z z q'=0 + z z6 e

=0 q e
e

... u 1
C (a) = C (a = 0) + C a + Z
z z z

a 9, =2
A£(a - ag,)+

u 2

c (a) = c ÷ z Bg,(a- ag,)°z g
q q 9,=2

u3

Cz6 (a) = Cz6 + Z D£(a - a£) O
9,=2

e e

and a is the angle of attack,

is the elevator deflection, C
z
a

q' is the nondimensional Pitch rate, 6
"'" " e

= _C /Sa, C = 3C /_q', C = 8C /8_ .
Z Z Z Z_ Z e

q 0

e

They then use stepwlse;regressio n to select terms, and thus knots, in the

model. This spline representation preserves the concept of stability and

control derivatives inherent in the usual Taylor series exPansio n of aero-

d wnamic coefficients but has the advantage of providing a representatio n of

C- over an extended range of the angle of attack a. A global model over ,

the observed range of a is thus obtained through the use of spline _.
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6. OTHER USES OF VARIABLE SELECTION PROCEDURES IN SPLINE RECRESSION

Thus far we have emphasized the use of variable selection to choose the

number and location of knots. There are other possible, but perhaps less _

useful, "extensions" to spline regression of variable selection procedures

based on polynomial or multiple regression models. In the latter cases, the

purpose is to determine the polynomial degree and the important independent

variables and interactions. This is accomplished by examining the

contribution of individuall terms in the model. With univariate spline

models, however, there are several polynomial pieces, not just one, whose

degrees may be examined, and, as seen previously, we may examine the

importance of each knot. Also, one may wish to examine the continuity

conditions at one or more breakpoints as in the example discussed by Smith

(ref. Ii). Thus, the complexity of the spline model over the polynomial

model manifests itself in the greater number of ways the dimension of the

spline parameter space may be altered. Splines in several variables present

even more possible diversity since, for example, two-variable spline

continuity occurs not across points but along lines connecting grid

points.

While it might be nice to have a single software package which could

perform any combination of these spline hypothesis tests, it is neither

feasible nor desirable. The major reason is that variable order splines,

i.e., splines with polynomial pieces of different degrees, have not been

sufficiently researched by mathematicians to allow for the satisfactory

construction in a general framework of a basis using either "+" functions or

B-splines. Lowering or raising the degree of a single polynomial piece must

be accomplished by applying restrictions to the model, and hypothesis tests

must then use restricted least squares. In simple cases this may be

straightforward (references II and 20), but in general the task is unmanage-

able. For example, the user is subject to hidden analytical errors as when

the regression or hypothesis degrees of freedom are not equal to the number

of restrictions because some restrictions are obtained automatically through

linear combinations of others. While theoretically such dependencies can be

checked, the usual methods would need some revision in the case
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of B-spline regression since hypotheses involve values of the fitted spline

or its derivatives (ref. 12). In the case of the "+" function basis, most,

but not all, of the individual terms are meaningful. However, the innocent

yet indiscriminant selection or removal of terms through hypothesis tests

can result in fits which are statistically valid yet nonsensical because

they are uninterpretable in terms of polynomial degree or knot locations

(ref. ll). Because of these various difficulties, it is reasonable to con-

struct task-specific procedures.

The application of variable selection to knot selection, as in the

examples in Section 3, is useful for smoothing data with a fixed order

spline with maximum continuity conditions. In these cases the interest is

not in the spline order but rather in determining the minimal number of

knots deemed adequate to faithfully represent the data. Cubic splines are

popular because of their low degree and second derivative continuity. The

selective use of forward or backward algorithms in some statistical software

packages using "+" functions (see Section 4), or the backward elimination

FORTRAN program developed here using B-splines, may be used for this

purpose.

Another possible "extension" of variable selection to splines is the

determination of the polynomial degree while keeping the number and location

of knots fixed, that is, not consider the knots as "variables" to be either

entered or removed. Because of the difficulties with variable order splines

discussed above, we must restrict ourselves to polynomial pieces of the same

degree. Unfortunately, even further constraints are necessary for this

version. The ideal situation would be tO compare a maximally continuous

(ck-2) k-th order spline, i.e., a k-th order spline with continuous f,

f(1) f (k-2)
with a maximally continuous k-l-st order spline Ick-3)._ ° • •

A formal test, however, is not possible. This can be easily seen by consid-

ering a specific example using the partial ordering of Some spline models

given in reference ii. Basis elements for C O and C 1 quadratic splines

and for CO linear splines with one knot are shown in Fig. 6.1. A compari-

son of orders 3 and 2 (degrees 2 and I) which retained maximum continuity

conditions would require comparing the C 1 quadratic with the C O linear.
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CO quadratic
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C 0 linear

-l,x,(x-t)
÷

Figure 6.1. A partial ordering of some spline spaces.

Neither is a subspace of the other, however, so they cannot be formally

compared (via testing). A solution of a sort is available if the CO

quadratic and the CO linear are compared, since, as can be seen from the

figure, the CO linear basis generates a subspace of the CO quadratic

space.

In general, a test to Compare spline orders can be made between splines

of order k and k-l, both having continuity C k-3. In the case of cubic

splines, for example, we could allow continuity of the function and its

first (but not second) derivative in order to determine whether the order

could be reduced from 4 to-3 or increased from 3 to 4. Since a C I cubic

has sufficient smoothness (at least to the eye), the procedure is not so

objectionable. Considerably less satisfactory, however, are the cases for

linear and quadratic splines. In comparing splines of order 3 and 2 as seen

in Figure 6.1, the quadratic spline would be continuous but not its first

derivative while in comparing splines of order I and 2, the linear spline

would not even be continuous. Of course, the results of formal tests can be

used in combination with informal comparison between SSE's of the models of

interest to decide upon an acceptable model, and we recommend this approach.

A backward elimination FORTRAN program using B-splines has been devel-

oped for the purpose of reducing spline order using the nesting of some

"sub-optimal" spaces as described above. Details for the appropriate B-

spline hypothesis tests are given in reference 12. The listing, documen-

tation and flowchart for the program are given in the Appendix, and we

illustrate its use with the Indy data. While some statistical software

packages could undoubtedly be used by defining "+" functions as in knot
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selection, no attempt was made to use them in this context. However, using

the results of Section 4 as a guide, we surmise that several backward el imi-

:lation procedures would be suspect while most forward selection algorithms

should give fairly accurate results _. Again, tolerance levels may have to be

made small in order to force entry of certain terms.

Figure 6.2 gives the FORTRAN program output for stepdown order selec-

tion on the Indy data starting with a cubic spline (order 4) with the two

knots in mid-_g_l and '_iI as in Section 3. The program compares splines of

different order with the same continuity conditions, though other fits are

given for information purposes. For this ex&mple, order reduction is made

from cubic to quadratic to linear. Estimates of the B-spline coefficients

and their standard errors are given for the spline of lowest order which can

adequately fit the data, and the highest continuity conditions are imposed,

For this case it is the CO linear.

A graphical display of these results is quite helpful, and Figure 6.3

shows a partial ordering of the relevant spline spaces along with hypothesis

test results and SSE's from the program. The dotted lines indicate the

stepdown c_mparisons we wish to make, while the solid lines indicate those

we can actually make through formal comparisons (tests). The importance of

user input into the variable selection process is becoming more widely

recognized, and here especially, because the formal tests available are not

exactly what _e would like. Consequently, we recommend the use not only of

the formal tests, but also of informal comparison, s between SSE's (or MSE's)

of competing models using a display such as Figure 6.3.

We illustrate this technique by going through Figure 6.3 step by step,

and we will discover •some interesting characteristics of splines along the

way. We first observe that while a formal test is not possible between the

62 cubic and the C1 quadratic, it would not even be necessary since the

quadratic has a smaller SSE than the C 2 cubic. A better fit is thus

obtained with a lower degree! _his phenomenon could never happen with poiy i

nomials, but such are the vagaries of splines. An informal comparison in
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_I_)OTH{_ _-I_ 0_" O_.D£R K- 4 _l'r_ MAXIMUM CO_INUI'rY C 2

HAS S_- 3BS.L_IB A_ MSE- 7.863_=_'_9_

CAt_ CRDE]_ K- 4 wITH SUB-_IMUM COMTINIJITY C I
BE _ TO ORD_ K l 3 l,_I'r_lt'f=_XIMIJMCOrITINUTIY C I

YES.

FORK, 4 AMD C I

FTAB_E VALUE - 4. _ OBSERVED F-

_- 348. 3496_=_08 _- ?.4:169494

I.L_

THE S;_CX3THEST SPLINE OF ORDE]_ K- 3 wITH MAXIMUM COI_TINJITY C I

SSE- 3?6.65994630 AND MSE- 7.5Z3319693

C._ _ K- 3 WITH 5UB-MAXIMUM CO'CINJITY C 0

BE RE_ TO _ K- 2 WITH MAXIMUM CC_CrlMUTIY C 0

Y_'S.

for K- 3 AFE) C 0

FTABLE VALUE - 4._ OBSIZ]R_,rLDF-

SSE" 368 .453"/1L:Y_B FISE" ?.67611901

3. 69172563

THE SMOOTHEST SPLIHE OF ORDER K- 2 WIdtH MAXIMUM C,rtIT!r_uITY C 0

HAS SSE- 453.468088_16 AriD MS_- B.G9153115

CAM ORDER K- 2 WITH SL_-MG_IrilJM COr_TINIJITY C-I

BE RZIXJCI3) TO ORDER K- I WITH MAXI_IJM CONTINUTIY C-I 9

NO.

fOR K- 2 Ah_ C-I

F'_ABLZ VALUE • 4. OB_ OBS_ r:

_E, _'B. 52409"313 _- 6.71)4_

285.._9L_'596

TERMINATES WITH L- 3; K- 2; C 0

M C(EF ST. ERR.

1 73.616"75_B_3 2. i988EC_t3

2 88.49577629 1. 117_4_05

3 114.979_I"700 .9_=_Se-Jc_5"_

4 157.47846182 1. 10901397

,_e__ FLIRI3-E]_ INFORMATIOI_ _w_c_

¢OR K- I AMD C-I

$SE- 6070.372_ _SE- 116.73"/93793

Figure 6.2. Output for order reductiion. Indy data.
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C1cubic C O quadratic C -I linear

348 368 328

C 2 cubic C I quadratic C O linear C-I constant

385 376 453 6070

Figure 6.3. Partial ordering of spline spaces including SSE's

and results of order reduction tests. Indy data.

in going from the C I quadratic to the C O linear reveals an increase of

77 in the SSE. While this increase cannot be formally judged insignificant,

we may wish to draw such a conclusion based on the results of the formal

test which compares the C O quadratic with the C O linear: the larger

increase of 85 is insignificant in that case. Having thus "safely" arrived

at the C O linear, we must decide whether to further lower the order. The

very large F value (285) from the program output which compares the C -I

linear and the C -I constant splines reveals the importance of the linear

trend. The big increase of 5742 in SSE from the C -I linear to the C -I

constant is thus highly significant, and since the increase of 5617 from the

C O linear to the C -I constant (the desired comparison) is only slightly

smaller, we conclude that the use of a constant spline fit is inadvisable.

7. SPLINES IN SEVERAL VARIABLES

A mathematical theory for splines in several variables is still devel-

oping, and a "satisfactory" basis even in two variables has not been found.

However, tensor products of either "+" functions or B-splines can be used to

form a spline basis in several variables. While a tensor product basis is

somewhat clumsy and its interpretation difficult, we explain here some theo-

retical aspects Of its use for the two variable case and give an example. :
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As in the example in Section 5, a spline-modified Taylor series expan-

sion can be used to model aerodynamic force and moment coefficients. This

time, however, Klein and Batterson (ref. 21) use splines in two variables,

the angle of attack a and the :sideslip angle b, to approximate the lat-

eral force coefficient and the rolling and yawing moment coefficients. They

use the yawing moment coefficient Cn as a typical example, and Cn

can be expressed as

C = C (a,b) + C (a)p' + C r'
n n 6 = 6 = 0 n n

a r p r

p' = r' = 0

(7.1)

n6 a n6 r
a r

where p and r are the rolling and yawing velocity and _a and 6r

are the aileron and rudder deflection. They approximate the function

by

Cn(a,b)

£i

C (a,b) = C + C b + l (A + A 1 b)(a - a.) 0n o I oi i i +
i=l

£2 £I £2
+ E B .(b- b.) + l Z D..(b - b.) (a - a.) 0

j=l o] J + i=l j=l lj j + i +

(7.2)

while the remaining functions in (7.1) areapproximated by splints in a

alone. Results from a stepwise regression using these terms are not as good

as in the one-variable case, and some fine-tuning remains.

From a theoretical point of view, the tensor product basis does not

have the nice interpretation of knots and Continuity constraints as in the

one-variable case, even using "+" functions. There is, however, a one-to-

one correspondence between two-variable "+" function terms and grid points;

or nodes, and for this reason, we use the term node basis to refer to tensor

products ofthe "+" function basis. As before, we use right-continuous "+"

functions so that 00 is i. Tensor products of B-splints may also be used to

43



OR;G;NAL PAG_ ;_

OF POOR QUALITY

construct a basis for splines in two variables, and we shall see that the

same advantages and disadvantages of the one-variable case carr_ over.

We discuss the simplest two-variable case in some detail: first order

splines, i.e. step functions. Their application is somewhat limited, but

there are several reasons for their detailed consideration. First and fore-

most, splines in two variables are difficult to envision and manipulate, and

consideration of the simplest case, namely constants, is thus highly desira-

ble. Second, as seen in the example above and in Section 5, the estimation

of aerodynamic force and moment coefficients using a spline-modified Taylor

series expansion reveals the importance of using constants from both inter-

pretative and numerical points of view. Finally, the two-dimensional cumu-

lative distribution function is a first order spline in two variables.

Thus, the constant case, while limited, has already shown its usefulness.

We first discuss the node basis by way of example. Suppose breakpoints

in the x variable occur at Xl, x2, x 3 and in the y variable at Yl

and Y2 for data in x 0 ( x < x 4 and Y0 ( Y < Y3" A "+" function basis

of order i in the x variable is (x- x0)f,... , (x -x3) f and in the y

0 , (y 0variable is (y - y0)+,... - y2)+, The tensor product basis is formed

0 (y _ y j)0 i = 0 ... 3"by taking all the 4 x 3 = 12 products (x - xi) +

j = 0,..., 2. Each basis element in the two variables is thus a plane of

height one bounded below by the line y = yj and on the left by the line x
l k

= x i. Its support is thus a quadrant of a sort (,____). We call the

intersection of these boundary lines, the corner of the quadrant, a node,

denoted *ij. Figure 7.1 shows the relevant grid and nodes. Through any

Figure 7.l.

Y3

Y2 "

Yl

Y0 "

x 0

L
x I x 2 x 3 x4

Nodes for a tensor product of "+" functions.
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variable selection procedure, a model may be found whose terms are a subset

of the 12 basis elements. Such a selection might result, for example, in

the nodes shown in Figure 7.2 with the statistical model

f(x,y) = S00x0_0+ + _02x0+Y2+ + 811xl+Yl+

+ 821x2+Yl+ + B22x2+Y2+ + 832x3+Y2+ + ¢,

0 (y _ yj)_. We saw earlierwhere xi+Yj+ is an abbreviation for (x - xi) +

the application of this technique to aerodynamic modeling.

Y2

YO

x 0 x I x 2 x 3 x_

Figure 7.2. Nodes resulting after variable selection on

a tensor product of "+" functions.

For splines of higher order, the same principles apply in forming the

basis elements: they are the tensor product of one-varlable "+" functions.

Knot multiplicities in one variable result in node multiplicities in several

variables. _e absence or presence of a node or node multiplicity corres-

ponds to the absence or presence of a certain basis element. There is thus

some carry-over from the one-variable case in interpreting the role that

basis elements play, and also in the fact that standard variable selection

software may be used. _e major drawback of this basis, as in the one-

variable case, is computational. Re basis elements do not have small

support, so that roundoff errors get worse as computations increase.

_e computational difficulties present in the node basis lead to con-

sideration of tensor product B-splines. _ile the for_lation of the latter

basis is straightforward, its interpretation and use in model selection

through hypothesis tests are not. me polynomial degree and importance of

knots in modeling are considerations that carry over from one to several

variables, and unfortunately, so do their difficulties when using B-sPlines.
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To compare differences in the two-variable case between the node basis

and B-spline basis, we consider a simple grid with nodes indicated (*) in

Figure 7.3.

y2
Yl

Y0

x 0 x 1 x 2

Figure 7.3. Nodes for model (7.3).

The statistical model for first order splines is thus

+ _llXl+Yl + cf(x,y) = 800xo+YO+ + BOlxO+Y1+ + . (7.3)

The function is a "true" spline in both variables except when ye[y 0 yl) ,

for then f is constant over [x0,x2). If this model is represented with

B-splines, each cell i is the support of a right-continuous plane which

has height i. Using the notation B.(x,y) for the basis element for each
i

cell i, the model may be written

4

f(x,y) -- [ 8iBi(x,y) + E subject to El =
i=l

This B-spline model is somewhat more complicated than the "+" function basis

in its representation because of the model restrictions, it is also not

Obvious how to interpret the B-spline coefficients in terms of the presence

or absence of nodes.

These simple examples illustrate that the "+" function terms are iden-

tifiable and meaningful on a grid as nodes, just as they correspond to knots

in the one-variable case. They thus hold an advantage over the tensor
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product of B-splines from an interpretative point of view. As B-splines

hold the computational edge, however, it would be desirable to identify the

linear combinations of B-splines which correspond to the presence or absence

of nodes. The interpretation and use of tensor product splines of higher

order is more difficult and remains to be examined in detail.

8. SUGGESTIONS FOR FURTHER WORK

There are potential research areas for both the univariate and multi-

variate cases. In the univariate case, an efficient stepwise computer rou-

tine using B-splines could be developed. This would give the user the

choice of forward and backward procedures with a computationally efficient

basis. The use of knot selection to fit data with loops could be investi-

gated, and approaching the problem using the parametric technique of Smith,

Price, and Howser (ref. 22), seenzs feasible. The successful use of splines

in two variables has already been demonstrated (Section 7), but further work

remains such as investigating fits to known underlying functions like we

have done in the one-variable case. Two-dimensional pictures in this case

would be most helpful. Also, while the multivariate mathematical theory is

still developing, interpretation of tensor-product bases from a statistical

perspective could continue from that begun in Section 7.
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Program Documentation

Two FORTRAN programs have been written which adapt stepdown procedures

to B-spline regression. One program is for knot elimination while the other

is for reducing the spline order. Theoretical details and appropriate ref-

erences are given in Sections 2 and 6. The programs are written in FORTRAN

5 and have been implemented on both the ODU DEC-1O and the NASA/Langley CDC

Cyber computers. Notation is patterned after that of de Boor (ref. I), and

definitions of parameters are given in the subroutine VL2NT, the second

subroutine called. All necessary input is read in or specified in subrou-

tine DATI: the data, sample size N'DATA, (initial) spline order K _ degree

+I, (initial) interior breakpoints and endpoints BREAK(.), number of conti-

nuity conditions V(-) at the breakpoints, number of intervals L = # interior

breakpoints +i, and tabled F value to be used in hypothesis tests. For

equal spacing, the breakpoints and continuity conditions are most easily

specified through a DO loop. Variables are dimensioned by one of three

parameters (defined in co,m_ent statements) which are specified in the PARA-

METER statement at the beginning of the main program.

Data must be interior to [BREAK(1), BREAK(L+1)]. For the Indy 8ata,

'X mln = 1 and X max = 61, so we arbitrarily set BREAK(l) = 0 and BREAK(L+I)

= 62. V(1) is the number of continuity Constraints at BREAK(I). For

example, V(1) = 0 means that the spllne is discontinous at BREAK(1) while

V(2) = 3 means there are 3 contiguous continuity conditions on the spllne f

at BREAK(2), i.e., f, f', and f" are all continuous at BREAK(2). Note that

V(1) must be less than or equal to K-I In order to have a "true" spline,

not a polynomial, across BREAK(l). We always set V(1) = 0, though only for

"symmetry" in the endpoint conditions, and V(L+I) need not be specified

since it is never used nor referred to.

The subroutine FLAG is designed to catch user input errors which would

otherwise cause the program to terminate abnormally or give inaccurate

results which may or may not be obvious to the user. Sample output detect-

ing errors in the input information of the Indy data is shown in Figure

A.I.
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"rT,,IEO_ K ,, 4

THE • I_ L = 3

THE DIHEHSION H - 5

BRF_._ II'(?S

33.5_
7.5_

CoP(r_ITY COiHDITIOHS
(B
4
3

r IHI_

5.¢_ 2
5.@¢I_ 3

7..5_ S

6Z._ 6
62._ 7
6E._ 8
6Z._K_8 9

BREAKPOIHTS MUST BE STRICTLY _IHG.
_IHT 33.5_88 IS blOT _ _ 81_.AKl_Ihrr

THE _ OF"CCW'_I"IHUITYCOHDITICHS MUST BE STRICTLY
LESS _ THE _F_.I;,EORDER K. V( 2)" 4 "'"
_T BR_IHT 33.58_BBeS8 IS TO0 LAR_.

x Vl_.LIE OUT Or _r_£.
x( t)- %._ IS HOT IH THE _ I_(I)- S._

Wm_ _w_ WKWo_ xcWol_ _ xcw_

ST£PIX:X_ C.R'_T P_. _ROG_ P_(::_TS.

Figure A.I. Sample output detecting input errors. Indy data.
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Several lines in the programs are for plotting only. These are calls

to the CDC system subroutines PSEUDO, INFOPLT , and CALPLT and the DO loop i0

which calculates the spline values at the knots.

For the knot elimination routine, input data and subsequently

calculated information are printed by means of subroutines DATI and OUTNTS.

This includes data values, spline order, number of intervals, dimension of

the spline space, and knots. At each step of the procedure as indicated by

the number of intervals L, the F-ratios for the importance of each

breakpoint are given along with the SSE and MSE. If a breakpoint can be

eliminated, it is specified and the procedure continues to stepdown. If no

breakpoint can be eliminated, the resulting number of intervals and spline

order are given along with a list of the values of the B-spline coefficients

and their standard errors. Sample output appears in Figure 3.1, p. 8, in

Section 3.

As in the knot elimination program, the subroutines DATI and OUTNTS of

the order reduction routine print input data and subsequently calculated

information. In addition, at each step, the printout gives the SSE's and

MSE's for two splines of order K, one with continuity C K-2 and the other

with continuity C K-3" The hypothesis test is described in words with the

results of the F test indicated. When further order reduction is not

possible, estimates of the B-spline coefficients and their standard errors

are given for the spline of lowest acceptable order with highest continuity

imposed. Additional information is given by including the SSE and MSE of

the next lowest order spline. Sample output for the Indy data appears in

Figure 6.2, p. 41.

Flowcharts are given in Figures A.2 to A.3 followed by the program

listings. A full listing of the knot elimination program from a CDC Cyber is

given, including the subroutines of de Boor (ref. I) that are used. For the

order reduction program we list only the main program and the subroutine

SSHYP2, a variation of SSHYP appearing in the first program.
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Read data,

bL-eakpoint s

DAT I

Get knot

sequence
VL2NT

Preliminary

output
OUTNTS

paramete:

values

FLAG

Output errors.

;ram Aborts

Fit data

LSTSQI
BSPLPP

ERRL2]

ervals

Figure A.2. Flowchart for knot elimination program.
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Test breakpoi

Do 5

I = 2, L

Get SSH

CNTRST

SSHYP

Print

F-ratios

breakpoint_

in. F-rat

<FTABLE

Output

breakpoint
eliminated

)u_ _o more

breakpoints

eliminated

Output

_.fficients and_

_tandard errory

Figure A.2. (concluded).
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Get knot

sequence
VL2NT

Preliminary I

output
OUTNTS

heck parameter_values /

. FLAG /

set}1END = 0

_it data \

LSTSQI

BSPLPP /

ERRL21 /

YES Output errors._

_/Program Aborts/ -_

YES _/Output results

/:for extra fit

Figure A.3. Flowchart for order reduction program.

55



oR!GINAL PAGE '_S

OF pOOR QUALITY

put results

for final fit

STDERR

)ut result

of smooth

spliae fit

K= i

NO

NO

) = K- 2

I Test for 1

lower degree

SSHYP2

K = 1

K K-I

V(.) K - i

Call

Set V(.) = K- 2

VL2NT FTABLE

NO

iEND- i
Output:

Degree can b=

reduced

Set v(.) = K - I>Call VL2NT

K = K- 1

Call VL2NT

Figure A.3. (concluded).
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KNOT ELIMINATION PROGRAM LISTING

M_.OT (DIRJT, OUTRJT, TAPK&-OUTPtIr, TAPE28, TAPE21, TAFt22)
C _ FOR B_F..CKPOI_ffrlIMIHATIOH FOR F_XED CR_R K.
C 71'I[_IJHCrIOrs_tO ITS rL_'T K-2 D£RIVATIMES PIJST E COHTXJ_JOUS.
C

C Peel:IXIS AT L2.qST 114[ Si_HFR.ESI2Z, _T;_.
C _ I5 AT _ N. WITH PI_IMOq COP<rlPIdITY OCI,IDI'I'ZCX'4S,
C M_._K-I. WITH NO C_INUITY COI_ITIC_, N-L.K.
C _ IS AT L.F.._ Karl.
C
C

• RKR. EC_}'(HHAX), G(_), DIAGCKTIIqR<), T(PCmRX)
i. ,DC_CFI'_), i_(FI'IRX), BI.F'Cr,_),F(_)
• ,_(HPI_),_(_,_), [RRO_ (HI_I_K)
• , P_, _H, SE<MI'_),F'_TIO(MM_)
• ,IB(_tl;_,HPS_X), L/PN (HHRX, HH_M), F3 (HMR<)
I_GE_ E3_, FieF',V,KI3_ (FI,_)

,,'I_T_v M_I_TA, X(IN_I,I:_(),Y(F(DI'I=K), F_'P_LJ[
COMM_ ,n_q_M/ ERF.._(rIM_), 03D'CK'ITt't_), L., K, V(hl'_)

ICOUMT'@
C Dfr_ ImT;_

C_LL Deft1(I(XI21T)

C _ 'n.Ic KNOT E_ID_CI:
GCLL. M.2HT(_, L,K,V,T,H,KEHD)

C R_EIJ_IH_RY OUnqJT
CFK.L OUTHTS (B_I(, V,L,T,H,K,K_]HD)

O4[0( IPPUT _TA
ZFIJ_-e
CI:LJ.F'_(IF'_,N)
IF(IF'_ .£Q. I) GO TO

C TEST FC_ CI]_TI>UOU_ K-1-:--rI_IVATI_ AT EACH KNOT
/]_IV-K-X

I F'MIN-F'T_:_

LMI"L-I

C_ LSI_I (ToNoK,Q,DIA(;,BCC_)
US'_l C_ E_VB, BC}+"AC, _ BC_V

cGz-r
E_-MI)AT_M-M

BSF'L_(T, BCO_, M,K,DI_, BI_, CO_, L)
C_ O_I(F',E3_, _, SE, P_)
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C

10

LPI"L÷I
DO 10 I'I,LP1

B(1)'R_(B, COET,L, K,B_( I),0)
CO_I/'m.JE

_._ _.L ............ iDco.r_ ................ :. ÷ -_ _ ÷ _- _-+ -_ + +_,i,-+',_,::,_

II4rOPLT (0, _)I:_TR, X, I, F", 1,0. ,62. ,74., 158., I. ,9,
= 9HINI)Y DATA, 1,IHY,0, 5.,4.,. 75,.75)
CALL INrCP..T(O,_TA, X,1,Y, 1,0. ,F:_.,74., 1513.,I.,9,

* 9MINI)Y DATA, 1,1HY, ;:_;,5.,4.,. 75,.75)
CALL INRCW:4.T(1,LM1, _E.AK (2), I, _-B(2), 1,0., 6,?.. ,74., 158., 1. ,9,

s _INDY DATA, 1, 1HY, 1, 5., 4.,. 7'5,. 75)

IF(L .ME. 1) _0 TO 12
$.RITE(_, 11) SSE, MSE

11 FORMAT(/,'" _-',F'16.B, SX, "M_Z-',F'16.8)

GOTO 9

C TEST _¢W, GCE_ £¢1C4 B4F_..,:N<POIFIT
12 _ITE(L:_, :_) L,F"rAB..E, SSE, M_
2 FOt%W_T(,.'//" L-',Z3,SX, 'F-TABLE VI_LLE IS',F16.8,//

1. ' SSE-',FI6.B,_X, '_-',F16.8.//
= ' Y--_RTI06 ARE: BI_IHTS ARE')

3 _ 5 II-2,L
ID-II
C_ CLOT( ID,,TI_IV, N,K,L,T,Bl_, KI3_, BRT, BLF',DCOET

C C_T CRLLS BCOr,n"
CALL S_(BC0EY, CTI_T, O,K,N, EI_T,V_,SSH, MSH, H_)

C SSHYP r.._ F'C_
Ir_TI0 (II)•_-_
6RITEcL_O,4) F_TIO(II), B_(II)

a FO_MAT(Zr16. B)
IF(F_TIO(II) .G_, F'MIM) GO TO 5
FMII_-F_TIO (II)

KMOT.II
5 COl,ITII,LE

IF (F'MIH .LT, "_'FCGBLJE) GO .TO 7
WRIT_(_B, 6)

6 FORMAT(/' NO BR_IIYT C_ BE ELIMINATED')
GO TO9

7 F'MI_-FRATIO(K_OT)
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WRITE(LIB, B) BREAK (KILT)

8 FCI_"IAT(//'" BEA_Ih"r',F7.3,' IS ELIMINATED')

C _ KI'IOT E(:a.Et'KI T AS WELL AS BE.c_, KE_, I::t'_ V
CALL RD<HOT (KE_, KHOT, H, K, L, T, V, B:E.cI< )

GOTO 1

C PRINT RESULTIN; COETICIEHTS, STAHDARD DEVIATIOHS, AND F-VCW_UES

9 CALL STIi:_(O, BCOET,K,H,L,ME,DIAG,AA,EE, LINV)
C STDE_R CALJ.S BCHIHV AHD MATVEC.

CALL CALPLT(O. , 0. , _)

25 STOP
EN)

C IHDY DATA
SUBROJTIHE DATI (IC0tJh'T)

COMMON STA_ /DATA/ AHI) /APFROX/ ARE USED.
C

C THIS _IHE READS IM THE DATA AHI) GIVES THE HUMBER AP_

C PLACI3_E]YT OF THE KHOT5 FOR THE FITTED SPLIHE.

FCRAMETER (HMAX-IB8, _-200, KTNMAX-2QeO)
IHTE_ V

REAL Y, ×

C_ / DATA / f,_ATA, X(HDMAX), Y(HI)MAX), FTABLE
COMMON / APPROX / BREAK(NMAX), COET(K_), L, K

= , V (hl'_)

DE:IATA • 5"5

WRITE(LIB, 5)
5 FORMAT( ' I_DY DATA'//' YEJ_ Y X' )

DO 1 I-1,NDATA

READ(21,4) '_.AR, Y(I),X(1) .
4 rOl_T(14, IX,r7.3, IX, r2.0)

WRITE(2B, 2) YEAR, Y(1),X(1)

2 FO_T (14, IX, F'7.3, 1X, F3. B)
1 CO','TINJE

C GIVE THE ORDER K AHD _ OF Iri_,'ALS L
K • 4

L'3
FTABLE -8. B8

C GIVE THE I_II, rrs AI,{DCoI,rrINJITY CORSTRAIFCI_S

B_(1) • 0.
BREAK(Z) ,_ ?.5
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l_Z.c_(3) - 33.5

V(%) -g
V(2)- 3
v(3) • 3

EHD
SUBROUTIHE VL_(I_, L,K,V,T,H,KI_ )

COMR_ THE KD40T SE(_ T AHI) DIME_IOH H F'_ THE BI_IHT
C SEQL_ BREAK, GIV_ THE SPLIHE ORDER K, THE _ (}" IHTER--
C VALS L, AHD THE HU_ OF COHTIHUITY COHDITIO_ V(I) AT BI_
C (1).
C
C.Um I M P U T
C BRcJ:_ (1) ..... BRF.AK(L÷I) .... THE BF_.AKPOIhFr SEOLE],K_.
C L.....THE HUP_ER OF" IH'_S.
C K .... THE _ OF" THE SPLIFE.
C V(2), ....V(L) ....THE _ OF" CCHTIHUITY C0_TR_IHTS AT
C BREAK(2) ..... BRZAK(L).
C
C=-Wfw'_ww':z0 U T P U T wo_wwo_dw
C T(t) ..... T(H+K) .... THE K]_OT SE_.
C H.... THE DIME_IO_ OF" THE SPLIHE SPACE OF ORDER K.
C KI_(1) ....THE I_ OF" THE LARGEST k._T EQUAL TO I_(I)
C
C_l_n_ M E T H 0 D
C THE FIK_-TK KI_OT5 ARE SET EQUAL TO BREAK(i). THE KHOTS _:_
C THE_ SEQUE_ SO THAT K - V(I) K_TS A_ AT BREAK(1) WITH
C K_(1) EQUAL TO THE IHDDC OF" THE L_ST KMOT AT BR_(I).
C H IS SET EQUAL TO K_(L) _ THE LAST K K_TS T(H'+I)....

T(H+K) ARE SET EQUAL TO I_(L÷I).
C

C

IMTEGER K,L,H,I,V(1),J, ISTART, ISTOP,
RF,AL BREAK(I), T(1)

SET THE FIRST K K]_OTS EQUAL TO GREAK(1).
DO 11 • 1, K

1 T(1) • BR_.(1)

KI_(1)

FIHD THE IHDEX KEHD(I) OF" THE LA_ST KI_OT EQUAL TO BRF_AK(1).
KE]'C)(1)• K
D021-2, L

2 KE_(1) • KI_(I-1) + K - V(1)

C
C

C
C SET T(KI_(I-1) + I) -...- T(KI_(1)) - BRF_.AK(1).

DO 10 I • 2, L
ISTART • KI3_D(I-I) +I
ISTOP - KI_(1)
DO 11J • ISTART, ISTOP

11 T(J) - BR_(I)
10COHTIHLE

H • KI3'C)(L)
C

_'T THE LAST K K}'OTS EQUAL TO BREAK(L+1).
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C
C
C
C
C
C
C
C
C
C
C
C
C
C

DOZ8 I- 1, K
20 T(H+I) • BI_EAK(L+I)

D¢
SUBRO_ IME 0tJTtlTS(BI_EAK, V, L, T, H, K, K]E]_)

THIS SUB_K_JTINE IS fOR OUTRJTIHG OHLY. IT _ ALL
O:N.L.IHG_ A F T E R _L21_T F_ BE_ _,

m w,. ,lw,w, I flP U T AHD 0 U T P U T • w m • m $
K .... THE S=LINE
L .... TIE _ _ I_S
M....THE DIME}610H OF THE S;_.IHE SPACE
BREAK(1) .....BWd_(L+I) ....THE BRD_kTK)IHT SE_
v(1) ....V(L) ....THE HLJMBE_ OF COMTIHLJITY COHST_qIHTS AT

BRD_(1) .... BREAK(L)
T(1) .... T(Pt) .... THE I,O_T SE_
KI_(1) .....KI_(L) .... I:'C)E_OF THE U:N_EST K_50T EQUAL TO

BRE._(I ) ..... BE_<CL)

4e
_, //" THE DIMEHSIOH H • '
WRITE(2_, 41)

41

DIMEHSIOH T(1), KI_(1), BREAK(l)
IHTEGER V(1)
WRITE(2B,,_B) K, L, M
FOF_'IAT(//'THE _ K - ', 13//' _ • IPfTERVALS L "'

, I3)

F(_T(//" I]REA_IHTS', T21B,
DO45J- 1, L

45 WRITE(2_,42.) BREAK(1), V(J)
4_ FCJ_IAT(F16.8,T38, I3)

LPI-L+I
WRITE(2B, 43) BREAK (LPI)

43 FCf_IAT(F16.8)
WRITE(_,B)

e FORMAT(//' T IN]:E_' )
NI_ • N+K
ICCi.Frr - 1
IHEX • i
_ITE(2B,5) T(1), I_

5 FORMAT(Fi6.B, 5X, 13)
DO 7 J • 2, Nl_

IF (T(J) ,EQ. T(J-I)) GO TO 50
6RITE(_,!2) ICCUHT, KD'_D(ZCOJ, rT), T(J), J

12 F'ORMAT(T30, "KI_',_)(',I3,')- ",I3,'TI,F16.8,_'X, I3)
GO TO 13

50 WRITE(21B,9) T(J), ]
9 FORMAT(F16. B,5X, I3)

GO TO7
13 ICOUHT • ICCU'fT + 1
7 COMTIHUE

, I3,

EHI)
SUBROUTINE FLAG( IFLAG, H)

C THIS SUBROUTIHE CHECKS FC_

• COHTIPiJI'rY COMDITIOMS')

6]
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OF poOR QUALITY

C (I) I_lhfrs WHICH P_ NOT STRICTLY IHC_I._;
C (2) TO0 MAhY CO_INJITY CO_ITIC_S;
C (3) K L_ THAN _0
C (4) X VALUES OUT C_" RA_ OF THE FIRST Arid LAST BR_IFfI_.
C

F_:RAME'_ (NS_X -100,_- 200, _- L_00 )
IFfrEGER V
CCI"IMON/ DATA / h_TA, X(FE_), Y(F'E)MAX),F']'AIBLE
COMM_ / AR_ / B(HMAX) ,COET(_) ,L,K,V(NMAX)

DO I I-1,L
IPI-I+$
IF(BRF..AK(1).GIZ.BREAK(I+I))
C(_II'LE

GOT02

GOT04

2 WRITE(_,3) BRZAK(I),BRV,AK(IP1)
3 F(3_MAT(/' BRZAKP01hrTs MUST BE STRICTLY IhKZ]ET_ASIH(;.'/
z ' B_IF_T',F16.8,_, "IS HOT LESS THAN BR_IF_",
I FI6.8)
IFLAG- I

4 DO 5 I,I,L
IF(V(1) .GE. K)

5 CG_n'II'LE

GO TO6

GO TO 20

6 L4_ITE(21B,?)I,v(1),BI_D:_(I)
7 FORMAT(/' THE HUMBER OF COHTIHUITY CC_DITIOHS MUST BE STRICTLY'/
= 5X,' LESS THAH THE SPLIFE ORDER K. V( ',12, ").',12."
z 5X,' AT BREAK_IHT',FI6.8," IS TOO LARGE.')
IFLAG-I

L_B Ir (K ".GT. 20) GO TO 8
GO TO 18

B WRITE(L'o,g) K
9 PC_T(/" K-', I2,' IS TOO L_. '/" T_ O_I_ K HOST BE L_O 0_',
* ' LESS.')
IFLAG. 1

10 DO 11 I-I,HDATA
IF(X(1) .LE. BREAK(1) .0R. X(1)

11 COHTIhlJE
.GE. BRF_AK(L+I)) GO TO 12

GO TO 14

12 WRITI_(L_B,13) I,X(1),BREAK(1),BREAK(L+I)
13 FO_T(/' X VALUE CtlT or RAh_.'/' X(',I4,'),',FI6.B,
* ' IS HOT IH THE R_ BI_(1)-',F16.8/
m 5)<, 'TO BRV,AK(LAST)- ',FL6.8)
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IFLAG-I

14 IF(N .G'r. HDATA) GO TO 16

GO 1"0 18

16 WRITE(2_,17) N, HDATA

17 FO_IAT(/' THE DIMENSIO_ H-',I2,
* ' IS GREATE_ THAH THE SAMPLE SIZE', 14,'
IFLAG- 1

,)

18 KTH-K_H
IF(HI}MAX .LT. HDATA) GO TO i9

GO T022

19 WRITE(2g,21) P_MAX, HI)ATA

21 FORMAT(/' CHECK PARt:rIETER STATEDEHT. '/S'X, ' HI:Pio.X=', I5,
* ' MUST HOT BE LESS THAH THE HLIMER OF DATA POIHTS'
w 14, '. ')
IFL;:_-I

22 IF (Hf'l_ .LT. H) GO TO L_3

,;p

i

GO TO 25

Z3 WRITE¢2g,24) M
24 FORMAT (/' CHECK _ STATEMEHT. '/5"><,

_, ' LESS THAH H-', I5)
IFLAG" 1

' HMAX MUST HOT BE',

25 IF(KTHMAX .LT. K'rH) GO TO 26

GO TO 28
26 _ITE(2_,2?) KTH

E? FCN_MAT(/' CHECK PARAMETER STATEPt_T. ',_"X,
* ' BE LESS _ K'r_-',I4,' ')

IFLAG- 1

_ MUST HOT',

L:'flIF(IrLAG. EQ. e) GO TO

WRITE(L'e.29)

29 FOI_IAT(///' _-,i_,_.... x{_,,,_,_x,x._,_o_llr_x_olc_or_o_x_ou ,/
' STEPDOWH CAfC_T _C£ED. _ ABORTS. ')

3e
EHD
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OF POOR QUALITY
j.

_)__UT I HE LSTSQI(T, H, K, Q, DIAG, BCCEF)
CALLS BSPLV_, BCHFAC, BO-_V
C
COMMC_ STAI'_MEHT DATA I5 USEI).
C
C THIS IS A m0DIFICATI0_ OF I_ BOOR'S SL_IhE l_,
C _ 255 IT lh_S T,H,K, FIhEF3 THE LF.AST S_S
C _I_ROXIMATI0_ TO THE DATA USIHG _ _I:_YS Q AHD DIAG_
C AND 0_S THE B-SPLIhE C0E}-FICIO'_'S BCOEF.
C

mARAM_ (KMAX-L_B,h_- L_8)

RF.AL BCC_"(H), DIA(;(H), Q(K,H), T(1), BIAT'x(.KP_X)-
COMM(_ / DATA / hE)ATA, X(NI)MAX), Y(h_), FTABIE

C

DO 7 ]-I,N
BCOO"(3) • 0.

IX)? I-I,K
7 0(I,1) • 0.

LI_-K
LEFTMK • O
DO 2_ LL,I,MI)ATA

LOCATE _ ST X(LL) IN (T(LE_),T(LD-T+I))
10 IF (l._ .EQ. H) GO TO 15

IF (X(LL) .LT. T(l_+l)) GO TO 15
l._ - l.D-f+1
LD-rMK • l._+l

GO TO 18
15 CALL BS;:_VB(T_K,1,X(LL) ,l._, BIAT'X)

DO _B MM-I,K
DW - BIAT'X(MM)
J • I._+MM
BCOET(J) - I_Y(LL) + BCOET(J)
I-1
DO 20 JJ-HM, K _

Q(I,J) • BIAI'X(JJ)=DW + QiI,])
28 I • I+i

CALL Br_AC(O, K,H,DIAG) --

EHD

C C_CL1.ATES THE WqLLE OF ALL POSSIBLY t_ B-SPLIFES AT x OF ORI_
C
C JCUT-MAX (]HIGH, (J+t)=( IHDE_-I ))
C
C WITH K_0T _QL_ T
C I_ BO_ PA_ 13.4-135

It_G_ INI_, THIGH, L_, I,T,J_
REAL BIAI_ (J"HIG_),T(I),X, DELTAL ( Jr'lAX ), DE]..TAR( Jtt::_ ), SAVEI), "rET_

C DIME_IC_ BIATX(JOUT), T(LE_+JOUT)
C _ FoR'r_ STA_D MAKES IT IMPOS_IBL_ TO SPECIFY THE L_TH
C OF T Ah_ OF BIA'rX ;M_CISEI.Y WITH_ THE It,Fr_DUCT!(_ OF OT_ISE
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C SUI:MERFLC)USADDITIOHRL AI_3.ME]_S.
DATA J'/1/

C SAVE J,I_E_.TAL,DIELTA_ (VALID IM FORTI_AM 7'7) -
C

GOTO (10,20),
10

C
20

215

3ll
BIATX( 1 )" 1.
IF" (J. GE._HIGH) GOTO 99

IHDEX

J3_1-J+1
DELTAR(J) "T(Lf]rT+J)-X
DIELTAL(J) • X-T (_÷ l-J')
SAV_D-O.
DO aS I'l,J
" TE_-BIATX( I)/ (DEI.TAR(I)+DELTAL (/PI-I ))

BIAT'X(I)-S_DELTAR (I)_.TE_
_m_I) •DELTAL (JPI-I )_TERM

BIATX(Jlml)-SAVED
J-J_l
IF (J.LT.JHI(g-I) C,OTO 20

C
99

EMD

SUBROUTINE B(]4rAC (W, _, _, DIA(;)
C

C CONSTRL_ THE CHOLE_ FACTORIZATIOM C • L * D * L--TRA_.
C SEI: DE BOORP. 2_
C

INTEGER _, NROW, I, IMAX, J, J'_, M
W(_,_OW), DI_(F;EK)W), RATIO

IF ( HROW .GT. 1 ) GO TO 9
IF (W(1,1) .GT.O.) W(I,I) - 1./W(1,1)

C STORE DIAC,OMAL C$"C IM DIAG.
9 DO 10 N-I,NROW

10 DIAG(M) • W(I,M)
C FACTORIZATIOM

DO 20 M-I,NROW
IF(W(I,M)+DIA_(M)

W(J,M) TM 0.

.GT. DIA(_(M))r_OTO %5

GO TO_O
W(I,M) • I./W(1,M)
IMAX • MIHO(NB_-I,MROW - M)
IF (IMAX .LT. 1) C,O TO
O_IAX• IMAX
DO IB I-I,IMAX

RATIO • W(I+i,H)mW(1,H)
DO 17 ]-i,J'MAX

W(J,F_,I) • W(J,_r*I) - W(J÷I,M)-f_ATIO
JtIAX • J_AX - 1
w(I+1,H) • RATIO

CCr_TINLE

14

15

17

18
20
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RLrTL.IR_

C SOLv_'S THE LIFEAR SYSTEM C,_;_OF _ NRO_ FOR x

C R_IDE_ w CC_Ai_ THE C_ FACTORIZATIC_ FC_ THE I_ (S'f_-
C _L_"tIRIC)POSITIVE DE]fINITE _'TRIX C AS C_TRLK:I'ED IH THE _L_ROdl'I_
C B(]-IFAC(QUO VIDE).
C I)E_ merGE L:'SB

INTE(_ hEI_NDS,I't_Ow, _T,JMAX, M,f,Q_i
w (_BAHDS, NKK)W),B(hIEK)W)

IF (NROW.GT.I) GOTO 21
B(I)-B(1)_W(1,1)

R£TLI_
C
C
21

25

C
C

FOI_ S;._TITLFFIC_. SOLVE L*Y-B FOR Y, STOFE IN B.
Mini -MBA_- 1
DO 30 N-i,_

JMAX-MINB (_B'(DMI,h_)
IF (.TMAX.LT. I) GOTO 30
DO 25 JII,SMP,X

B(J+H) -B(J+N)-W (J+ 1,H )-B(tl)
COHTIN.E

BACXSUBSTITUTIO_. SOLVE L-I'R_.X-I_(-I).Y FC_ X,
DO 40 H-NKK)W,i,-I

B(H)-B(M),NW(I,H)
JtIRX-MIMB(NB'_I, HROW-_ )
IF (JI'_.LT.1) C,OTO 48
DO 35 J-l,J_

35 B(N) -.B(H)-W(J÷I, H) -B (J._)
40 COMTIN.E

RETL$_
E]'_D
SL]I_wOIJTZhE_ (T, BCOE,H,K;SCRTCH, I_T__K,COET,L)

C CALLS BSPLV'9
C

STC_ IN B.

C CO_TS THE B--RE_SZIITATIO_ T, BCOEF, M, K OF SOME SPLIhE IHTO ITS
C PP--REPRESE]MTATIC_NBR£RK, COET, L, K.
C DE BOOR PAGES i48-141

INTEG_ K.L, H, I, .I, .TP1, KMJ, LE]:'T, LSOVAR
RF..ALBCCNE}'(H),BRF_AK(1),COET (K, I),T (1),

C DIM_ICWM _I_LAK(L._I),COE}'(K,L.),T(IM+K)
LS(_"AR.,O
BREAK(1.).T(K)
IX3_5(_LEFI'-K,N

C

SCRTC_ (K,K )
BIAI'X(K_) ,DIFF,F_, SUM

FIHD THE _ _O_IVIAL KHOT IW_E]_.
IF (T(L_+ 1).EQ. T(L.E}'T)) GOTO
L.S(}-AR-LSOF;_+ I
_RF.AK(L_K)FAR+1)-T (L_+ I)

IF (K.GT:I) GOTO 9
COIE}'(I,LSCF'A_)•BCOEF (LE}-T)
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C
9
10
C
C
C
C

20
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C

2e
30
50

GOTO 50
5"r0RE THE K B.--SPLIHECOE}'F'S RELEVAHT TO CI_ KI_OT IHT_
IH SCRTCH(., I).
D0 10 I-I,K

SCRTCH (I,1)-BCO(_"(L£}'T--K+I)

FOR J,l,...,K-I, C(_ THE K-3 B-SPLIHE COE}-F'S RZL_ TO
KI_OT IHTE_ r0_ THE .T-TH DERIVATI_ BY DIFF'_IH(;

THOSE FOR THE (J-I)ST DERIVATIVE, AHD STORE IN 5CRTCH(. ,J+1).
DO 21BJPI-2,K

]-.IPI-1
KI'LT,.K-J
FKM..T-?LC_T(KM.I )
DO 20 I-1,KI'LT

DIFT-T ( _+I ) -T ( L£}-T + I-K]'LT )
IF (DIFF.GT.B) SCRTCH(I,J'PI)-

_, ((SCRTCH( I+1, J)-SCRTCH( I,3) )/DIFF),_'tCMJ
C0_IHUE

FOR J-0, ....K-I, FIHD THE VALUES AT T(LE_) OF" THE 1+1
B- S_L.IH£S OF"ORDER J+i WHOSE SUP_T CONTAI_ THE
k'h_T lhrr_ _ THOSE Or" ORDER J (IN BIAI"x), TH_ C0_BIHE
WITH THE B-_=LIhE COE_'S (IN SCRTCH(.,K-3)) FOLI'{DE_IER
TO COMPUTE THE (K-.T-I)ST DERIVATIVE AT T(_) OF" THE GIVEH
5Pt.IP,E.

I'40TE. IF THE _I_EATED CALLS TO BS_V'B ARE l'_ TO (_TE
TOO MUCH 0_, l'_ RE]_ THE FIRST CALL BY
BIAT'X(i)•1.
AIHD "D-IESUBSEOIJET_ CALL BY THE STA_
J-.TPl-I
FOLLOWED BY A DIRECT COPY OF" THE LIHES
DEL TAR (J )aT(L._+J )--X

,,,,,,

BIAT_X(.T+I)-S_
BSPLVB. DELTPL(M'/'I:L×) _ DELTP_,(KM_LY,) WO3_D _ TO

AP_ IrlA DIME_IC_ STATELY, OF CC_.

CALL BSFLV_( ToI,I,T(LE_), L_, BIAT'X)
CCET (w:,LSC_'AR)•SCRTCH (1,K )
DO 30 /Pi-2, K

BSR.VB( T, J"P1,2, T (_), LZTT, BIAT'X )
K_-K+I-.ml
_M-O.
DO 2B I-1,J_1

SU'I-BIATX (I)_-_CRTCH(I,KMJ )+SUM
COET (KMJ, LSOF'AR)- c3JH

COh'TIf'tIE
L-LSC_'AR

E_
5UBROUTIHE ERRL,?.I(F3"AU,ERROR, _)_RI_, SS£, _)
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C_LL5 5L_ P_(I_CFERV)
C
C THIS 9JBROUTINE COMF4JTE5 THE ERROR SS QND MS. IT IS A

C MODIFIED V_xSIC_ (}"I)E BOOR'S SL_RCUT!DE L2ZRR, PAGE 261.
C MSE IS THE 0UTIM.rrEDMEQN S(_L_RIZDERROR.
C

PQRAMETER (MMQX -I_, NDMQX- L_Q, KTNMQX- L:_ )
IhrFEGER ERRDF, V ....
RF,J_ F-r_U(1), ERROR(i), M_, Y, X, B_, COE_-

C DIME3_SlON RTQU(NDATA), ERROR(_I)QTA)
COM_ / DATA / h_TA, X(r_)MP,X),Y(h_), F'TC_BLE
COMP_ / QPPRO× / BRF_.qK(hMP.X),CCET(_), L, K

, V(MMAX)
C

DO 10 LL-I,NI_TQ
R'TQU(LL) • PP_U(I_,CCCF, L,K,X(LL),O)
ERROR(LL) - Y(LL) - YTQU(LL)

10 _SE • SSE ÷ ERRORCLL)._2
MSE • SSE/E)_RI}"

R_
END
REAL RI.NCTIOM PP4_LU(B,COE}',L,K,X,J_(ZRIV)

C CALLS 'INTERV'
C ?_QLCLLQTE5 VI:N_UEAT × OR JDERIV-TH DERIVQTIVE OF PP FCT FROM PP-RE}:_

IMTEGER JI)ERIV,K,L, I,M,MDLMCY
B(L) ,COE}'(K,L), X, _MMSD_, H

P__U.O.
R79MJ_R-KoSDERIV

C CCRIVQTIVE5 OF 0RS(_ K OR HI(HER QR_:RE IDE]NTIC_LLY ZERO.
IF (?MM31_.LE.0) GOTO 99

C
c _-z_ i_x I o_ L._RG_ST_IVT TO THE LD'-r_ x.

O:LL INTERV (BREQK, L,X,I,tIDUMMY)
C

C EVALUATE .TDE32IV-THDERIVQTIVE OF I-TH POL.VI_C_iI_N_PIECE AT X.
H-X-B_(I)
I)0 10 M-K,J'_IV÷I,-I

PPV__U- (PPVQL_ )_+K:0ET (M,i)
10 _qTtTEe- r't't"JDR- 1

EMD
SUBROUTD,_ IhFFERV(XT,L>CF,X,LZ}-T,MFI_QG)

C COMPUTES LE}-t-MAX(I,I.LE.I.LE.L>cr.Pt_D.XT(1).LE.X)
C DE BOOR PQGE g2

INTEGER LETT, L.X'T,]'T'L.AG, IHZ, IL0, ISTEP, MIDI_LE
REAL x,XT(LXT)
DATA IL0/I/

C _ IL0 (A VALID YOR11_c_ STAT_-_EMT IN THE NE}J 197"7 5TQ_DQRI))
IHI-ILO+I
IF (IHI.LT.LvXT) GOTO 20

I_" (X.G_E.XT(LXT)) GOTO 110
IF (L>CT._E.I) GOTO 90
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c

31

35

C
4@
41

45

C
C
5_

53

ILO-LXT-I
IHI .LXT

IF (X.GE.XT(IHI))
IF (X.GE.XT(ILO))

I_==_HOW×.LT.XT(ILO). DECREASE ILO TO CAPTURE X.
ISTEP.I

IHI-ILO
ILO=IHI-ISTE_
IF (ILO.LE.1)
IF (×.GE.X'r(ILO))
ISTEP-IS_

ILO=I
IF (X.LT.XT(1))

x.GE.XT(IHI).
ISTI_-%

ILO-IHI
IHIoILO+ISTEP
IF (IHI.GE.L>CT)
IF (X.LT.XT(IHI))
ISTEP-IS_

IF (X.GE.XT(LXT))
IHI-L.X'T

GOTO 35
GOTO 5_

GOTO 31

GOTO 98
GOTO 5_

IHC_ IHI TO CAPTURE x.

GOTO 45
GOTO 58

GOTO 41
GOTO 118

XT(ILO).LE.X.LT.XTCIHI). MARR_ THE IFfrE_vCt.
MIDDLE=(ILO_IHI)/Z
IF (MIDDLE.EQ. ILO) GOTO I08
NOTE. IT IS A_ THAT MIDDLE=ILO IN CASE IHI-ILO+I.
IF (X.LT.XT(MIDDLE)) GOTO 53

ILOIMIDDLE
GOTO 50

IHI=MIDDLE
GOTO

C=,w=_JET oLrrptrrAMD _E-rUR_.
98 MFLAG.-I

LEF'r-1

_88 MFLAG-O
L_-ILO

RETLR4
110 MFLAG-1

LD-T.LXT

04D
5L_IME O_r( I,

RET_

IDE_IV, H, K, L, T, BREAK, KI_,
* BLOT, B..F', DCC_:', CTRAST)

CALLS BCOtI'I"
C
C FIMDS THE CO_fTRRST COE}'FICIO4TS FOR TESTING CCW4TINUITY Or THE
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C J'DERIV-TH DERIvATIVE OF THE SPLIFIE _TIOt_ AT BREJ:IK(I).
C
C_ I M P U T _=_.wm,
c L....hl._ lhr_5
C T(1) .....T(DI+K)....THE KHOT SE(a.E:)'I::£
C I....THE lh_ Of" THE I_INT 0V INTEREST
C BREAK(I) ....BI_(L+I) ....THE BREFI<POIMT SlEQUE_
C Jiffy ....M01_C_TIVE lhrrE(_ GIVING THE _ Olr THE D(RI-
C vATIVE TO E _l'_
C K]E}'E)(I)....KE}_G)(L).... INDE_ Cf THE LJ:_K_ESTKIIOT EQNJPL TO
C BI_(1) ..... BRE_ (L)
C H ....DIME:MSlC_ 0r gM.INE SPACE
C K....0RD_ OF SPLII(
C BLOT, BI_F, DCOEF... WOi_ _ OF LE:I_TN H
C
C_,.w_m_w-_0 U T P U T w,:*molo_K
C CI'_T(%) .....CT_T(N) ....THE COhgl_T CO_ICIE_S USED TO
C TEST ccr,rriNUiTVoF THE J-DERIV-TH
C DERIVATIVE AT B(1)
C
C_ M E T H 0 D xo_w_
C THE rLI,ICTION SL_ BC01,trIS USED TO CO_ THE VALUE OF"
C THE L._ Q_ MI(;_'TLIMITS Of" THE J'DERIV-TH DERIVATIVE OF
C _ELEV_ B-.-g:LIN_ AT BRF_.QK(1).
C

IMTEGI3R KI3_I)(I)

REAL BRT(1), BLF(1), CTI_T(1), T(1),
BI_(1), I)CC(F (1)

DO LMB JJ- _, H
21B I)COE}-(J/) • e.

IX) 18 J - I, M
IX:0E(J) • I.

CC_ v_ for MI(}-C CONTINUITY
IF (KE]_(1)-K+I .LE. J .P_{D. ] .LE.H'Z3'_Dtl))GO TO 30
BRT(]) • e.

GOTO a_B
_T(J) • BCC_(T,DCC_,M,K,I_(1),KI3ND(1),

w JI)ERIV)

COMPUTE VALUE FOR LEFT C01,?FIhlJITY
40 IF(KBID(I-i)-K+I .LE. J .QND. ]

_(1) - el
.LE. KE_(I-%)) GO TO 50

GO TO c_a
.SB BI.}'(J)- BCCt,IT(T,I)COEF,N,K,BRE_(I),
$ KI:I_D(I-I ),.TDEIRIv)

C
COMPUTE DIF'rE]_E3_CZOF"THE LEFT _ RIGHT vQ_LES

F_ c'r_T(J) • BMTtJ) - @j-(J)
DCC_'(J) - 0.

10 CONT IN_E
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FUSION BCO_(T, BCO(}',M,K,X, I,_IV)
CALOJ._TES _ AT X OF" _IV-TH DERIVATIVE (}" SPLIFE FROM

C THIS IS A MODIFIEI) V_ION 0_" DE BOOR'S SUBR_I_E BVALLE,
C ;_ 144. THE ONLY DIFF_ IS THAT THE L_-HAND KI_OT
C IhEEX I IS INmUTEI) RATHER THAN FCU'_ IN INTERV. CC_SE-
C QLEhCE.Y, LII'E 18 IS MODIFIED TO INPUT I AF_ LINES 718 AND
C _ ARE OMITTED. TIE PURPOSE IS TO ALL(_ EVALUATIOH AT
C BR_qK]_)IMTS WITH _ (8R RIGHT) COMI'IhUITY.

_RAMD'I_ (KMAX-L_B)
Ih_(_ JI_IV, K,H,

_w

BCCE_'(1),T(1), X,
C DIM_IO_ T(h_M<)

BCC_Fr-g.
IF (JIE_IV.(;_.K)

=w= IF K-I (ANI)J_Iv-e),
KM1-K-i
IF (I,_1. GT. 0)
BCO_T- BCCET (I )

C
C
C
C
C
C

B-EP.

I,ILO, IMK,J,JC,JCM IH,JCI_:_,JJ,KI"IJ,KM i,MFLAG
,N_I

AJ (KMAX), DL (KMAX), DR(KMAX), FKMJ

GOTO 99

BCO_C- BCO{}-(I).

GOTO I

GOTO 99

STORE THE K B-_IF{ CO_ICIZ_n's RI_ fOR THE K_T I_
(T(1),T(I÷I)) IN AJ(1) ..... AJ(K) A_D COM_ IX.(J)-×-T(I+I-J),
I_(3)-T(I÷I)-X, ?-1 ..... K-1. SET ANY OF THE AJ NOT OBTAINA_
FROM IN_JT TO _I]_O. SET ANY T.S NOT OBTAINO,BLE EQUAL TO T(i) OR
TO T(N+K) A_IAT_LY.

1 JO_IH- I
IMKoI-K
IF (IMK.GE.B) GOTO 8
IC_I_-I-IMK
DO 5 J-l,1

5 I)L(J).x-T(I+1-_)
DO 6 I-I,KM1

PJ(K-J)-g.
6 DL(_)-DL(I)

8 DO 9 I-1,KM1
9 DL(])-X-T(I+i-J)

10 JCMAX-K
_MI -N-!
IF (_MI.GE.g)
JCMAX=K+_MI
DO 15 J-I,JCMAX

15 DR(1).T(I+J)-X
DO 16 J.JCMAX,KM1

AJcI+I)-e.
16 I)_(J)-I_(J(_)

18 DO _9 J-i,KM1

C_TO ig

"GOTO _8

GOTO _'B

7!



poorQuAuTY

C
C
C

19

_DO
21

IF
DO

23

I_(J)-T(I÷I)-X

21XC-JCMIH,JCMAX
AJ(IC)-BCOET(IMK÷IC)

•*- DIFFI_ TE C0_ICIEIYTS /I)ERIV TIMES.
(JI)ERIv.EQ.0) GOTO 3B

23 J-l, _IV
KIMJ-K-J
FKMJ-FLOAT (KMJ)
ILO-KMJ
DO 23 11-1,K_LT

AJ(11)- ((AJ (11+ %)-AJ(JJ) )/(DL (IL0)+DR (JJ) ))w_

IL0-ILO- I

CC_ VALUE AT X IM (T(1),T(I÷I)) OF JI)ERIV-TH I_IVATIVE,
GIV_ ITS RELE_ B-SPLINE COETS IM AJ(1) ..... AJ(K-_DERIV).

3_ IF (J_IV.EQ.KM%) GOTO 39
DO 33 J-.rDE_IV+I,KM1

KMJ-K-J
IL0-K_
DO 33 J]-I,KMJ

AJ(3J)-(AJ(JJ+I ),,IX.(ILO)+AJ (3J)*DR(JJ))/(DL (ILO) +DR (JJ))
33 ILO-ILO--I
39 BCOMT-AJ(i)

99 RETLR_

C THIS IS FC_ I I}"HYPOTHESES.
SUI_INE SS_YP (BCOET, CTRAST, W,F_, H,PVAR, VAR,

z SSH, MS_, HI)F)
CALLS FORSUB
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C

FI_)S THE VARIAN_Z OF A CO'_'RAST AriD THE MS FOR TT_STIh_ THAT
THE CO_n'_ST IS ZERO.

I s t Jm_ I tIPU T** z -**
LIh'V....THE lh_ OF L OBTAIhE]_ FROM B C H I N V
CTRAST .... THE C0_T VECTOR OBTAIhE]) FROM C H T R S T
BCCET ....THE B-SoLINE COETFICIEhFFS
W .... THE MATRIX FROM B C H F A C C0_TAIHING D-lh_

....EQUALS K
H .... THE _ 0_" _S IN THE COHTlq_ST VECTOR--

ALSO THE DIMD'61C_ Or ?_E SFLIFE
pv_ .... _ V_CTO_ C_" LENGTH N EQUal..TO THE PROI:_JCT

W(i,.)*A, I.E. D-Ihgr*Lit_V*CTRAST

V_ .... THE CCE}'FICIQ_fTOF SIGMA-_ IH THE VARIA_ OF THE
COMTI_ST, I.E. THE _ROEW_NSTCTI_T-TR_N_SPOSE=LINV-
T_,D- lh_ lh_T_T

S_5_, MSM, _ ....THE SS, MS, A_ I)F FOR THE HYPOTHESIS
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ORBG!NAL P>_G_ ;_

OF POCR QUALITV

CI***,*METHOD*** $ **
C THE P_ODUCT LINV*CI"_T IS OBTAINED TNEN PPEI'E_tTIPtIED _
C D-IMV l'_ THAT RESULT IS P_TIFE.IED BY (LINV*CTKN_ST)-

C

;_EQL MUM, MSH
_AL CTIR_qST(1), W(h_AMI_3,M), PVAR(N)
PEAL BCOET( I )

NUM- 0
DO 3 II-i,M

3 NUM • NUM + (CTR_T(II)-BCOEZF(II)_

FORSUB (W, CTRAST, NBC_DS. N)
DO I II-I,N

l F'VAR(II) • W(I,II)KTRAST(II)
V_ - 8

DO 2 II-I,N
2 VAR • VAR + CTRAST(II)_oVAR(II)

SSH • (NI_*2)/VAR
MSH -SSH

HDF- 1

C

C
C

C
C
C
C

C
C

C
C
C

C
C
C
C

RETLRN

SL_3RiXJTINE F01E_:JLIB(W,AA, NB_I)S, t;EK_J)

SOLVES LY-AA FOR Y AD_) ST_S IN AA

• ****. INPUT,*- _**
W. Q MATRIX FED IN FROM B C H F A C AND CONTAINIMG IN ITS

THE DIAC_S OF A P D SYMMETRIC MATRIX C
NB_'_DS.., THE I_DWIDTN OF C
D_R_3W.,.THE ORD OF C
AA THE VECTOR OF LI_NGI'H _ COMTAINING THE RIGHT HA_ SIDE

******0UT PUT** ****
QA...THE VECTOR OF LENGTH _ CC_T_INIhK; THE ._SC)LUTIOM

*,****METHOD******

THE FO_D S_JBSTITIJTI0_M ROUTI_ FR_W! DEBOC_'S BOMSLV IS t3S_D

REAL W(NB_, r_EK)W), AA(NRO_)

21

IF (hI_0W.GT I) GO TO 21
_Q(1)-¢:_( 1)W_(1,1)
m:'n.e_
NBI_DIM1:MB_- I

DO _ N-I,NROW
/MAX-rll_ (NI_ I,NROW-_ )
IF (J'MAX LT 1) GO TO

DO 2'3 ],I,/MAX
L:_ ¢:_( J.H,4 ) -AA( J i-N) .-W( J+ 1, N) *_:1 ( N )

CC_rl"IN.K
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OF POOR QUALITY

C
C
c
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C

EHD
g./B_trTIHE RE)_T (Kt_, KHOT, H, K, L, T, V, BF_)

_S THE _0T SEQUE_ T( ) BY OMITTIMG THE LEAST
SIGHIFICAHT KNOT, BI_.AK(KHOT)

" INPUT ...........
KID4D(1)..,THE IHI_ OF THE LARGEST KI_O'rEQUAL TO BREAK(I)
K_OT... IhEEX OF THE BR_Ihn" TO BE OMITTED
H...DIM_ION OF THE (OLD) S;oLI_E SPACE
K...ORDER _ THE SDLINE
T... 1.0v_OTSE(_
V(1)..HU_ OF"CONTINUITY COHDITIOHS AT BREAKCI)
BREAK... BRFJqK]_OI_fF_QtJEI,KI

H...DIME]_SIC_ OF (h_) SPLIhE SPAC_ WITH BREAK(KHOT) OMITTED
T(1)..T(N)...(I"EI,J) hOOT SEQLIE3',K]ZWITH _(_T) OMITTED

SINCE BREAK(K_IOT)-T(KI_'E)(W3,1OT-I)+I)-...,T(KE]_E)(K],_OT)), WE
R_ ALL T'S BEYOND.

DIM_ION KI]ID(1), T(1), BRF_AK(1)
IhrrEGERV(1)
11-KE_D(K_OT-I) +I

12-KI3_D(KHOT)+1
31-hM-K-I2+I

DO 1 K_-I,J1
KI-KT-I

T(II+KI)-T(12+K1 )
H-N- (K-V(KHOT)

DO 2 II.KI_0T,L
BREAK (II)-"BREAK (II+1)
IF(If .EQ. L) GO TO 2
V(II)'V(II+I)
KI_(II)-KI_( II-1 )+K-V (II )
C0_TIFtE
L-L-I

R_

_L_I_Ot/TINE STDE_ (W,BCOEY,K,H,L,MSE, BB,AA, 5E, LIb'V)
C_S BCHIh_ AND MArC
C
C THIS SUI_IhE COMPI/IES THE 5TAHDARD E]R_ OF THE B-SPLINE
C CCE_ICIENT5 _(D (A/Tl_T5 THEM.
C

RF_J_LW(K, H), BCCNE_"(H), P_SZ,BB(H, H), SE (N), LIHV (N, N). AA(H. H)
CALL BCHIHV(W,K, N, LII'N)
WRITE(L_B,10) L,K

18 FORMAT(///' PROC_ TI3_I_ATES _iTH L-',I3,' AHD K.',13/7

7_
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_OF POOR.QUALITY

I, ' N COEF S.E. ')

11

DO 11 II-l,ri
DO 11 JI-1,N

BB(JJ,II)-W(1, II)-LI_V(I I,JJ)

;'IATMEC(;%N,he,_, LINV,_¥_)

12
13

DO 13 II,1,N
_'( II)-SifT (Pi:l( II, II ) _MStE:)
WRITE(20, 12) II,BCO_(II ),c_"(II)
FO_T( 13,2}'16.B )
CC_I;'[E

C
C STO_E _ IDEDfrITYMATRIX IN I_V

21 DO 10 I-I,_ROW
DO 10 I,I,_ROW
IF (I .EQ..I)
Ir_V(I,1) - 0.
(_ TO 10

Z'O l_v(I,J) - I.
10 CO_n'lhUE

C

GO T020

C _0_ _ FO_ 5UISTITUTIO_ FROM B C H S L V.
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OR{GP,NAL p_G_ t_
OF -POOR QUALITY

DO 40 J-l,_t.4
IX) _ _.,,t,FROW

• MZNOCFO_M1, _
Ir'(/_X ."E'r.:tY . Go TO 30
DOZ5 I • t,,.ll"lRX

L'5. IMV(!m,3)"- INv(I+_,J) - W(I,I,N)*I_V(N,J)
30 COMTINJE

40 c0hrrZNJE

END
SLq3R_ INE MATVEC (N,MM, M,X,Y,Z)

c r_ THE _ _TRI× OR VECTOR Z _I_ IS T_E _ODLL-r

C

X(N,N_), Y(NM,M), Z(N,M)
DO 1 I'_- l",H

DO2 J - 1,M
z(I,J) - o.
DO 3 K-1,N_

,3 Z(I,J) - Z(I,3) ÷ X(I,K)w,Y(K..T)
2 CONTINJE
1 col,frIMUE

END
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ORiGiNAL PAG_ I_

OF POOR QUAL|TY.

''4" "

ORDER REDUCTION PROGRAM LISTING

C
C
C
C
C
C
C
c
C
C

>O_LT2( IPPUT, O(/?PUT, TAPE6-OUTPLK, TAPF.2_, TAPE2.1 )
STEPDOWHFOR REIXJCIHG SPLIHE ORIX:R (FOR ALL IHTERVALS
5IMULTA_EOLSLY) WHILE KITING THE K1MOTSFI>_I) A_ A_SUMIHG
K-_ CONTIMUITY CONDITIOn6

HI_ IS AT L_ THE SAf_ SIZ£, HDATA.
PfI:Q<IS AT LEAST H. WITH MP.XIMUM COHTIHUITY CCW_STRAINTS,

M-L+K-I. WITH HO COHTIHUITY COHS'rI_IHTS, N-L,,K.
KT_ IS AT LEAST KW¢t.

PCRR'IET_ ¢N'IAX- ieB, HI:f'_- 2_B, KTH'_- L_eB )
REAL BCOEF( N'IAX), O( _), DIAG(KTI, I,1AX), T (rtI:PIAX i

• , L IHV (K'rHMAX), DCC_:" ( HMAX), BRT(;,#'tAX), BLF (HMAX)
, AA( HHAX), VAR( HMAX), B( N'IAX), C (hi,lAX), ATRP (_)

s , F( _MAX), _ (MDMAX), MSH,MS£, S£ (hi,lAX)
J , KMAT(HMAX, HMAX), F'B(HHAX)
• , WVAR(f'l'lAX), CC(HHAX), CT(N,1AX), CTI_T (HMAX)
I_TEG_ D:_,I_', HI:_",V, KEHD( HMAX)
COPI'I(O /DATA/ I'.I_mATA,X(H])MAX),Y(H]_MI::_.(),F'TI_L.E:
COP'IMON/_ BF_..qK(I_I_qX),CCE}'(K_),L,K,V(HMI:6X)

ICOLI_IB
C EHTER DATA

CALL I)ATI(ICOUM'r)

C _ THE k_'4OTS£_
CALL VL2fYT( BREAK, L, K, V, T, H, Kt3_)

C _IMI_J:_Y OU_
CALL (X/TMTB( BRZR(, V, L, 1', H, K, KtZN))

CHEO< IHF_jI"DATA
IFLAG-8
CALL _L_( IrLA(;,H)
IF(IF'_ .EQ. I) GO TO 25

CALL PSZUIX3

C WE WILL TEST THAT THE K-I-ST DERIVATIVE IS ZZRO IM ALL INTI_S
C

C G£'r TIE LI_AST SQuAR£S FIT, I.E., THE B-SPLIH£ CO£}"FICII_,fTS.
1 CALL LSTSQI (T,H,K,Q,DI_:KB,BCOET)

C LSTSQ1 CALLS BSPLVB, BO-F'AC, AND BCHSLV.
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ORIGINAL RAGE f#

OF POOR QUALITY

C (;ET SSEANI) mSZ

CALL BSPLPP (T,BCOE, N,K,DIAG, BEEAK, COEF, L )
CALL E]_I(F, D_, ERRI_, SSE,MSE )

C _i CALLS PPVALU WHICH CALLS lhn'ER'V.
I_(IEI'iD .EO. 2) GO TO 30

10

LPI"L+ 1
DO 10 I'I,LP1

FB( I)-PPVALU( BREAK, CCET, L,K,BR_( I),0)

Cw_i_r_wxt_ PLOTS *_wokw_r,_n_ w=_woww_w_,_wi
CALL INFOR.T (0, rtDATA, X, 1, r, 1,0., 6w3., 74., 158., 1.,

9, 9Hilly DATA, 1, !HY, 0, 5. ,4., .7'3, .75)
CALL INFOPLT(O,F(DATA, X, i,Y, 1,0. ,62. ,74., 158., 1.,

= 9,91._I_Y DATA, I,IHY, ::_'2,S., 4.,. _,.. 7_;)
CALL II'IFOPL T(1,LM i,BREAK (2 ),1,FB (2),1,0 .,62 .,74.,158 .,I.,

• 9,9HINDY DATA, I,IHY, 1,5. ,4., .75, .75)

KI,I-K-1
K_-K-2
I<M3-K-3
IF(IE_.EQ.I) GO TO 8
Ir(V(2).EQ.K_) GO TO _2
_RITE(_, 15) K, M3"_,SSE, FtBE

15 F(:W_RT(//' __',
•, //' THE S;IOOTHEST Sot.IN[ OF ORDER K-',I2,_<,
s 'WITH MAXIMUM CCi'EINJITY C',12,27,/5"X,
_, 'HAS SSE-',F16.8,_, 'AND MSE-',F16.8)
IF(K.EQ.I) GO TO 8
WRITE (21a,16) K,KM3, K_il.KI'i3

16 F'ORMAT(/" CA_ ORDER K-',I2,2:X, "WITH SL/B-MP.,XIMUMCOIYTINLJITYC',
_, 12,2X/SX, 'BE REI)LWZ_:DTO ORDER K:',I2,2X,
• 'WITH MAXlMJM CCi'fTINUTIYC', I2,' "_')
DO te II-2,L

IB V(II)-K-2
CALL vt__xcr ( BREJ_, L, K, V, T, N, KETtD)
GOTO I

C TEST F0_ LOWER ORDER WITH THE kti4_)THESI$MATRIX KMAT.
12 DO 80 J_-I,N
80 DCOET(JJ) - 0.

DO 2 III-1,_
I)COEF(III) - 1.
DO 81 II-1,L

KMAT(II, III)-BCCI'fT(T,DCOEF, N,K,B( II),KEI'C)(II ),K_I )
M- (II-I ),¢+_-III

81 CT(m)-KMAT( If, Ill )
I)C(:_EF(III)• 0.
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q

2 CCt.rTIHUE
O:N.L SSH'Mo2(BCOET,CT, 0, K, L, N, _, DIAG, V_, S_H, MSH,HDF', B, C

, ATRP, _R, CC, CTI_T)
SSHYP2 CALLS FCRSUB AN) _1"_C.

F'R_TI O-MS-VI'_
IF(F_TIO.GE.FTABLE) GO TO 5
WRITE(22, 3)

3 FO_'IAT(//' YES. ' )
_RITE(21B,31) K, KH3, F-rC:_I_E,FI_T I O, SS£, MS£

31 FORMAT(' FOR K-',I2,2_K,"_ND C',I2,2X/_,
• 'F-rP31.E VALUE -',F16.B,SX, 'OBSERVED F-',F16.8
= .,'SX, 'SSE=',F16.8,_, "MSE-', F16.8)
K=K-I

%%._NT(BRERK,L,K,V,T,H,_)
GOTO I

5 IEHD- 1
_RITE(2_, 6)

6 FORMAT(//' HO. ')
_ITE(20, 31) K,KH3, FTQI_, _R_T IO,SSE, HSE
_RITE(2_, 32)

DO 71 II-Z,L
71 V(II)-K-I

CALL VL_(B, L,K,V,T,H,K_)
GOTO 1

C F_IHT R_'SULTIHG CO_ICIEHTS AHD STAHDARD EI_.
8 WRITE(2g, 13) L,K,KM2
13 FCW_IAT(///' _ TERMINATES WITH L-',I2, '; K-',I2,'

,= //' N COET ST. ERR. ')
; C',I2

O:I.L STII_(Q,DCOET, K,H,L,MSE, DIPE;,_,SE,LIHV)
5-1"II3RRCALLS BCHIHV _ MAI"V_C.

IF(K .[Q. I) GO TO 25
IEHD-2
K=K-1

DO _ II-2,L
40 V(II)-K-I

VLc_T (BRZ_, L, K, V, T, H, KE_ )
GOT01

38 WRITE(E_B,L'9) KH1,KM3, S.._,HS£
29 FORMAT(//' _w,:_,,Jw,**.k._www,_w** InJRT1-E_ IhF'O_TIOH w,..w_w_,'/

• 5"x,'fOR K-',I2,ZX, 'Pf_DC',I2,2_J
= 5X, 'SSE= ', F16.8, 2:X, "PIS£=', F16.8)

CAU. CQLPLT(O. ,0. ,999)

25 STOP

EHD
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ORIGINAL P_ _

OF POOR QUALITY

4

5

6

B

SUB_ INE SSH'_ (BCOE}-,CT, W,NI_, NC(_, N,A
,PV_, VAR, SSH, _'SN,__, B,C,A'r_, _VAR, CO, CTRAST )

lhrrEG_ HI}-,NCON, N, N_
RF_ALSSH

_VAR(NC0_, N), A(NCON, N), W(NI_, N), c'r(1).
R_.ALV_cNC0t_,NC0_), B(N), CcNCO_), A'r_(N,h(C_) .

_, _:_(NCON,NC0_), C_T(NCC_,t_), BCO_(rN),CC(N)
DO 1 I-I,NC(_
IX) 2 J,T-I,N

M-JJ+( I-I )w_N
CC(l.t),CT(M)

CTR_T(I, IJ)-CC(JJ)
CALL r0_(w, CO, NB_, N)
IX) 3 J'-I,N

A(I,3)-CC (J)
C0_INLE

DO 4 II,I,NCON
DO 4 JJ-1,N

Pv_( II,JJ) -w( I,]J),A( If, JJ)
DO 5 I-I,N

DO $ ]-I,MCO_
ATe( I,J) -A(J, I)

CALL I'_?VEC ( r,ICOFI,N, NCOFI,PVI_, AI"RP, VI:::_)
DO 6 I-I,NCON

;'IM-MCC_I÷1
DO 6 J-1,MM

WVAR( I,J) -V_( I'q-1, J)
CALL BO-FAC (6rV_,NCON, NC0_, DIP(;)

f'_TVEC ( NCO_, N, 1, CTl_C_T, BCOE}", B )
CALL FORSUB(_'AR, B,NCON, NC0_)
DO 8 I-I,NCON

C(J),WVAR( I, J)*B(J)
CALL MATVEC (I,NCC_, I,B,C,SSH)
MSH,,5_.'t_CON
HI)F-NCON

8O
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